mirror of
https://github.com/danny-avila/LibreChat.git
synced 2026-02-07 18:14:22 +01:00
📉 feat: Add Token Usage Tracking for Agents API Routes (#11600)
* feat: Implement token usage tracking for OpenAI and Responses controllers - Added functionality to record token usage against user balances in OpenAIChatCompletionController and createResponse functions. - Introduced new utility functions for managing token spending and structured token usage. - Enhanced error handling for token recording to improve logging and debugging capabilities. - Updated imports to include new usage tracking methods and configurations. * test: Add unit tests for recordCollectedUsage function in usage.spec.ts - Introduced comprehensive tests for the recordCollectedUsage function, covering various scenarios including handling empty and null collectedUsage, single and multiple usage entries, and sequential and parallel execution cases. - Enhanced token handling tests to ensure correct calculations for both OpenAI and Anthropic formats, including cache token management. - Improved overall test coverage for usage tracking functionality, ensuring robust validation of expected behaviors and outcomes. * test: Add unit tests for OpenAI and Responses API controllers - Introduced comprehensive unit tests for the OpenAIChatCompletionController and createResponse functions, focusing on the correct invocation of recordCollectedUsage for token spending. - Enhanced tests to validate the passing of balance and transactions configuration to the recordCollectedUsage function. - Ensured proper dependency injection of spendTokens and spendStructuredTokens in the usage recording process. - Improved overall test coverage for token usage tracking, ensuring robust validation of expected behaviors and outcomes.
This commit is contained in:
parent
d13037881a
commit
9a38af5875
7 changed files with 1190 additions and 3 deletions
|
|
@ -8,6 +8,7 @@ export * from './legacy';
|
|||
export * from './memory';
|
||||
export * from './migration';
|
||||
export * from './openai';
|
||||
export * from './usage';
|
||||
export * from './resources';
|
||||
export * from './responses';
|
||||
export * from './run';
|
||||
|
|
|
|||
434
packages/api/src/agents/usage.spec.ts
Normal file
434
packages/api/src/agents/usage.spec.ts
Normal file
|
|
@ -0,0 +1,434 @@
|
|||
import { recordCollectedUsage } from './usage';
|
||||
import type { RecordUsageDeps, RecordUsageParams } from './usage';
|
||||
import type { UsageMetadata } from '../stream/interfaces/IJobStore';
|
||||
|
||||
describe('recordCollectedUsage', () => {
|
||||
let mockSpendTokens: jest.Mock;
|
||||
let mockSpendStructuredTokens: jest.Mock;
|
||||
let deps: RecordUsageDeps;
|
||||
|
||||
const baseParams: Omit<RecordUsageParams, 'collectedUsage'> = {
|
||||
user: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
model: 'gpt-4',
|
||||
context: 'message',
|
||||
balance: { enabled: true },
|
||||
transactions: { enabled: true },
|
||||
};
|
||||
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks();
|
||||
mockSpendTokens = jest.fn().mockResolvedValue(undefined);
|
||||
mockSpendStructuredTokens = jest.fn().mockResolvedValue(undefined);
|
||||
deps = {
|
||||
spendTokens: mockSpendTokens,
|
||||
spendStructuredTokens: mockSpendStructuredTokens,
|
||||
};
|
||||
});
|
||||
|
||||
describe('basic functionality', () => {
|
||||
it('should return undefined if collectedUsage is empty', async () => {
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage: [],
|
||||
});
|
||||
|
||||
expect(result).toBeUndefined();
|
||||
expect(mockSpendTokens).not.toHaveBeenCalled();
|
||||
expect(mockSpendStructuredTokens).not.toHaveBeenCalled();
|
||||
});
|
||||
|
||||
it('should return undefined if collectedUsage is null-ish', async () => {
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage: null as unknown as UsageMetadata[],
|
||||
});
|
||||
|
||||
expect(result).toBeUndefined();
|
||||
expect(mockSpendTokens).not.toHaveBeenCalled();
|
||||
});
|
||||
|
||||
it('should handle single usage entry correctly', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(1);
|
||||
expect(mockSpendTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
user: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
model: 'gpt-4',
|
||||
context: 'message',
|
||||
}),
|
||||
{ promptTokens: 100, completionTokens: 50 },
|
||||
);
|
||||
expect(result).toEqual({ input_tokens: 100, output_tokens: 50 });
|
||||
});
|
||||
|
||||
it('should skip null entries in collectedUsage', async () => {
|
||||
const collectedUsage = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
null,
|
||||
{ input_tokens: 200, output_tokens: 60, model: 'gpt-4' },
|
||||
] as UsageMetadata[];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
|
||||
expect(result).toEqual({ input_tokens: 100, output_tokens: 110 });
|
||||
});
|
||||
});
|
||||
|
||||
describe('sequential execution (tool calls)', () => {
|
||||
it('should calculate tokens correctly for sequential tool calls', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
{ input_tokens: 150, output_tokens: 30, model: 'gpt-4' },
|
||||
{ input_tokens: 180, output_tokens: 20, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(3);
|
||||
expect(result?.output_tokens).toBe(100); // 50 + 30 + 20
|
||||
expect(result?.input_tokens).toBe(100); // First entry's input
|
||||
});
|
||||
});
|
||||
|
||||
describe('parallel execution (multiple agents)', () => {
|
||||
it('should handle parallel agents with independent input tokens', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
{ input_tokens: 80, output_tokens: 40, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
|
||||
expect(result?.output_tokens).toBe(90); // 50 + 40
|
||||
expect(result?.output_tokens).toBeGreaterThan(0);
|
||||
});
|
||||
|
||||
it('should NOT produce negative output_tokens for parallel execution', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 200, output_tokens: 100, model: 'gpt-4' },
|
||||
{ input_tokens: 50, output_tokens: 30, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(result?.output_tokens).toBeGreaterThan(0);
|
||||
expect(result?.output_tokens).toBe(130); // 100 + 30
|
||||
});
|
||||
|
||||
it('should calculate correct total output for multiple parallel agents', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
{ input_tokens: 120, output_tokens: 60, model: 'gpt-4-turbo' },
|
||||
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(3);
|
||||
expect(result?.output_tokens).toBe(150); // 50 + 60 + 40
|
||||
});
|
||||
});
|
||||
|
||||
describe('cache token handling - OpenAI format', () => {
|
||||
it('should use spendStructuredTokens for cache tokens (input_token_details)', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{
|
||||
input_tokens: 100,
|
||||
output_tokens: 50,
|
||||
model: 'gpt-4',
|
||||
input_token_details: {
|
||||
cache_creation: 20,
|
||||
cache_read: 10,
|
||||
},
|
||||
},
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
|
||||
expect(mockSpendTokens).not.toHaveBeenCalled();
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({ model: 'gpt-4' }),
|
||||
{
|
||||
promptTokens: { input: 100, write: 20, read: 10 },
|
||||
completionTokens: 50,
|
||||
},
|
||||
);
|
||||
expect(result?.input_tokens).toBe(130); // 100 + 20 + 10
|
||||
});
|
||||
});
|
||||
|
||||
describe('cache token handling - Anthropic format', () => {
|
||||
it('should use spendStructuredTokens for cache tokens (cache_*_input_tokens)', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{
|
||||
input_tokens: 100,
|
||||
output_tokens: 50,
|
||||
model: 'claude-3',
|
||||
cache_creation_input_tokens: 25,
|
||||
cache_read_input_tokens: 15,
|
||||
},
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
|
||||
expect(mockSpendTokens).not.toHaveBeenCalled();
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({ model: 'claude-3' }),
|
||||
{
|
||||
promptTokens: { input: 100, write: 25, read: 15 },
|
||||
completionTokens: 50,
|
||||
},
|
||||
);
|
||||
expect(result?.input_tokens).toBe(140); // 100 + 25 + 15
|
||||
});
|
||||
});
|
||||
|
||||
describe('mixed cache and non-cache entries', () => {
|
||||
it('should handle mixed entries correctly', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
{
|
||||
input_tokens: 150,
|
||||
output_tokens: 30,
|
||||
model: 'gpt-4',
|
||||
input_token_details: { cache_creation: 10, cache_read: 5 },
|
||||
},
|
||||
{ input_tokens: 200, output_tokens: 20, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
|
||||
expect(result?.output_tokens).toBe(100); // 50 + 30 + 20
|
||||
});
|
||||
});
|
||||
|
||||
describe('model fallback', () => {
|
||||
it('should use usage.model when available', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4-turbo' },
|
||||
];
|
||||
|
||||
await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
model: 'fallback-model',
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({ model: 'gpt-4-turbo' }),
|
||||
expect.any(Object),
|
||||
);
|
||||
});
|
||||
|
||||
it('should fallback to param model when usage.model is missing', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [{ input_tokens: 100, output_tokens: 50 }];
|
||||
|
||||
await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
model: 'param-model',
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({ model: 'param-model' }),
|
||||
expect.any(Object),
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe('real-world scenarios', () => {
|
||||
it('should correctly sum output tokens for sequential tool calls with growing context', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 31596, output_tokens: 151, model: 'claude-opus' },
|
||||
{ input_tokens: 35368, output_tokens: 150, model: 'claude-opus' },
|
||||
{ input_tokens: 58362, output_tokens: 295, model: 'claude-opus' },
|
||||
{ input_tokens: 112604, output_tokens: 193, model: 'claude-opus' },
|
||||
{ input_tokens: 257440, output_tokens: 2217, model: 'claude-opus' },
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(result?.input_tokens).toBe(31596);
|
||||
expect(result?.output_tokens).toBe(3006); // 151 + 150 + 295 + 193 + 2217
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(5);
|
||||
});
|
||||
|
||||
it('should handle cache tokens with multiple tool calls', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{
|
||||
input_tokens: 788,
|
||||
output_tokens: 163,
|
||||
model: 'claude-opus',
|
||||
input_token_details: { cache_read: 0, cache_creation: 30808 },
|
||||
},
|
||||
{
|
||||
input_tokens: 3802,
|
||||
output_tokens: 149,
|
||||
model: 'claude-opus',
|
||||
input_token_details: { cache_read: 30808, cache_creation: 768 },
|
||||
},
|
||||
{
|
||||
input_tokens: 26808,
|
||||
output_tokens: 225,
|
||||
model: 'claude-opus',
|
||||
input_token_details: { cache_read: 31576, cache_creation: 0 },
|
||||
},
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
// input_tokens = 788 + 30808 + 0 = 31596
|
||||
expect(result?.input_tokens).toBe(31596);
|
||||
// output_tokens = 163 + 149 + 225 = 537
|
||||
expect(result?.output_tokens).toBe(537);
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(3);
|
||||
expect(mockSpendTokens).not.toHaveBeenCalled();
|
||||
});
|
||||
});
|
||||
|
||||
describe('error handling', () => {
|
||||
it('should catch and log errors from spendTokens without throwing', async () => {
|
||||
mockSpendTokens.mockRejectedValue(new Error('DB error'));
|
||||
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(result).toEqual({ input_tokens: 100, output_tokens: 50 });
|
||||
});
|
||||
|
||||
it('should catch and log errors from spendStructuredTokens without throwing', async () => {
|
||||
mockSpendStructuredTokens.mockRejectedValue(new Error('DB error'));
|
||||
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{
|
||||
input_tokens: 100,
|
||||
output_tokens: 50,
|
||||
model: 'gpt-4',
|
||||
input_token_details: { cache_creation: 20, cache_read: 10 },
|
||||
},
|
||||
];
|
||||
|
||||
const result = await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(result).toEqual({ input_tokens: 130, output_tokens: 50 });
|
||||
});
|
||||
});
|
||||
|
||||
describe('transaction metadata', () => {
|
||||
it('should pass all metadata fields to spend functions', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
const endpointTokenConfig = { 'gpt-4': { prompt: 0.01, completion: 0.03, context: 8192 } };
|
||||
|
||||
await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
endpointTokenConfig,
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledWith(
|
||||
{
|
||||
user: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
model: 'gpt-4',
|
||||
context: 'message',
|
||||
balance: { enabled: true },
|
||||
transactions: { enabled: true },
|
||||
endpointTokenConfig,
|
||||
},
|
||||
{ promptTokens: 100, completionTokens: 50 },
|
||||
);
|
||||
});
|
||||
|
||||
it('should use default context "message" when not provided', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
await recordCollectedUsage(deps, {
|
||||
user: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({ context: 'message' }),
|
||||
expect.any(Object),
|
||||
);
|
||||
});
|
||||
|
||||
it('should allow custom context like "title"', async () => {
|
||||
const collectedUsage: UsageMetadata[] = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
await recordCollectedUsage(deps, {
|
||||
...baseParams,
|
||||
context: 'title',
|
||||
collectedUsage,
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({ context: 'title' }),
|
||||
expect.any(Object),
|
||||
);
|
||||
});
|
||||
});
|
||||
});
|
||||
146
packages/api/src/agents/usage.ts
Normal file
146
packages/api/src/agents/usage.ts
Normal file
|
|
@ -0,0 +1,146 @@
|
|||
import { logger } from '@librechat/data-schemas';
|
||||
import type { TCustomConfig, TTransactionsConfig } from 'librechat-data-provider';
|
||||
import type { UsageMetadata } from '../stream/interfaces/IJobStore';
|
||||
import type { EndpointTokenConfig } from '../types/tokens';
|
||||
|
||||
interface TokenUsage {
|
||||
promptTokens?: number;
|
||||
completionTokens?: number;
|
||||
}
|
||||
|
||||
interface StructuredPromptTokens {
|
||||
input?: number;
|
||||
write?: number;
|
||||
read?: number;
|
||||
}
|
||||
|
||||
interface StructuredTokenUsage {
|
||||
promptTokens?: StructuredPromptTokens;
|
||||
completionTokens?: number;
|
||||
}
|
||||
|
||||
interface TxMetadata {
|
||||
user: string;
|
||||
model?: string;
|
||||
context: string;
|
||||
conversationId: string;
|
||||
balance?: Partial<TCustomConfig['balance']> | null;
|
||||
transactions?: Partial<TTransactionsConfig>;
|
||||
endpointTokenConfig?: EndpointTokenConfig;
|
||||
}
|
||||
|
||||
type SpendTokensFn = (txData: TxMetadata, tokenUsage: TokenUsage) => Promise<unknown>;
|
||||
type SpendStructuredTokensFn = (
|
||||
txData: TxMetadata,
|
||||
tokenUsage: StructuredTokenUsage,
|
||||
) => Promise<unknown>;
|
||||
|
||||
export interface RecordUsageDeps {
|
||||
spendTokens: SpendTokensFn;
|
||||
spendStructuredTokens: SpendStructuredTokensFn;
|
||||
}
|
||||
|
||||
export interface RecordUsageParams {
|
||||
user: string;
|
||||
conversationId: string;
|
||||
collectedUsage: UsageMetadata[];
|
||||
model?: string;
|
||||
context?: string;
|
||||
balance?: Partial<TCustomConfig['balance']> | null;
|
||||
transactions?: Partial<TTransactionsConfig>;
|
||||
endpointTokenConfig?: EndpointTokenConfig;
|
||||
}
|
||||
|
||||
export interface RecordUsageResult {
|
||||
input_tokens: number;
|
||||
output_tokens: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Records token usage for collected LLM calls and spends tokens against balance.
|
||||
* This handles both sequential execution (tool calls) and parallel execution (multiple agents).
|
||||
*/
|
||||
export async function recordCollectedUsage(
|
||||
deps: RecordUsageDeps,
|
||||
params: RecordUsageParams,
|
||||
): Promise<RecordUsageResult | undefined> {
|
||||
const {
|
||||
user,
|
||||
model,
|
||||
balance,
|
||||
transactions,
|
||||
conversationId,
|
||||
collectedUsage,
|
||||
endpointTokenConfig,
|
||||
context = 'message',
|
||||
} = params;
|
||||
|
||||
const { spendTokens, spendStructuredTokens } = deps;
|
||||
|
||||
if (!collectedUsage || !collectedUsage.length) {
|
||||
return;
|
||||
}
|
||||
|
||||
const firstUsage = collectedUsage[0];
|
||||
const input_tokens =
|
||||
(firstUsage?.input_tokens || 0) +
|
||||
(Number(firstUsage?.input_token_details?.cache_creation) ||
|
||||
Number(firstUsage?.cache_creation_input_tokens) ||
|
||||
0) +
|
||||
(Number(firstUsage?.input_token_details?.cache_read) ||
|
||||
Number(firstUsage?.cache_read_input_tokens) ||
|
||||
0);
|
||||
|
||||
let total_output_tokens = 0;
|
||||
|
||||
for (const usage of collectedUsage) {
|
||||
if (!usage) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const cache_creation =
|
||||
Number(usage.input_token_details?.cache_creation) ||
|
||||
Number(usage.cache_creation_input_tokens) ||
|
||||
0;
|
||||
const cache_read =
|
||||
Number(usage.input_token_details?.cache_read) || Number(usage.cache_read_input_tokens) || 0;
|
||||
|
||||
total_output_tokens += Number(usage.output_tokens) || 0;
|
||||
|
||||
const txMetadata: TxMetadata = {
|
||||
context,
|
||||
balance,
|
||||
transactions,
|
||||
conversationId,
|
||||
user,
|
||||
endpointTokenConfig,
|
||||
model: usage.model ?? model,
|
||||
};
|
||||
|
||||
if (cache_creation > 0 || cache_read > 0) {
|
||||
spendStructuredTokens(txMetadata, {
|
||||
promptTokens: {
|
||||
input: usage.input_tokens,
|
||||
write: cache_creation,
|
||||
read: cache_read,
|
||||
},
|
||||
completionTokens: usage.output_tokens,
|
||||
}).catch((err) => {
|
||||
logger.error('[packages/api #recordCollectedUsage] Error spending structured tokens', err);
|
||||
});
|
||||
continue;
|
||||
}
|
||||
|
||||
spendTokens(txMetadata, {
|
||||
promptTokens: usage.input_tokens,
|
||||
completionTokens: usage.output_tokens,
|
||||
}).catch((err) => {
|
||||
logger.error('[packages/api #recordCollectedUsage] Error spending tokens', err);
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
input_tokens,
|
||||
output_tokens: total_output_tokens,
|
||||
};
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue