🚀 feat: Agent Cache Tokens & Anthropic Reasoning Support (#6098)

* fix: handling of top_k and top_p parameters for Claude-3.7 models (allowed without reasoning)

* feat: bump @librechat/agents for Anthropic Reasoning support

* fix: update reasoning handling for OpenRouter integration

* fix: enhance agent token spending logic to include cache creation and read details

* fix: update logic for thinking status in ContentParts component

* refactor: improve agent title handling

* chore: bump @librechat/agents to version 2.1.7 for parallel tool calling for Google models
This commit is contained in:
Danny Avila 2025-02-27 12:59:51 -05:00 committed by GitHub
parent 34f967eff8
commit 9802629848
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 187 additions and 40 deletions

View file

@ -27,10 +27,10 @@ const {
formatContentStrings,
createContextHandlers,
} = require('~/app/clients/prompts');
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
const { getBufferString, HumanMessage } = require('@langchain/core/messages');
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
const Tokenizer = require('~/server/services/Tokenizer');
const { spendTokens } = require('~/models/spendTokens');
const BaseClient = require('~/app/clients/BaseClient');
const { createRun } = require('./run');
const { logger } = require('~/config');
@ -380,15 +380,34 @@ class AgentClient extends BaseClient {
if (!collectedUsage || !collectedUsage.length) {
return;
}
const input_tokens = collectedUsage[0]?.input_tokens || 0;
const input_tokens =
(collectedUsage[0]?.input_tokens || 0) +
(Number(collectedUsage[0]?.input_token_details?.cache_creation) || 0) +
(Number(collectedUsage[0]?.input_token_details?.cache_read) || 0);
let output_tokens = 0;
let previousTokens = input_tokens; // Start with original input
for (let i = 0; i < collectedUsage.length; i++) {
const usage = collectedUsage[i];
if (!usage) {
continue;
}
const cache_creation = Number(usage.input_token_details?.cache_creation) || 0;
const cache_read = Number(usage.input_token_details?.cache_read) || 0;
const txMetadata = {
context,
conversationId: this.conversationId,
user: this.user ?? this.options.req.user?.id,
endpointTokenConfig: this.options.endpointTokenConfig,
model: usage.model ?? model ?? this.model ?? this.options.agent.model_parameters.model,
};
if (i > 0) {
// Count new tokens generated (input_tokens minus previous accumulated tokens)
output_tokens += (Number(usage.input_tokens) || 0) - previousTokens;
output_tokens +=
(Number(usage.input_tokens) || 0) + cache_creation + cache_read - previousTokens;
}
// Add this message's output tokens
@ -396,16 +415,26 @@ class AgentClient extends BaseClient {
// Update previousTokens to include this message's output
previousTokens += Number(usage.output_tokens) || 0;
spendTokens(
{
context,
conversationId: this.conversationId,
user: this.user ?? this.options.req.user?.id,
endpointTokenConfig: this.options.endpointTokenConfig,
model: usage.model ?? model ?? this.model ?? this.options.agent.model_parameters.model,
},
{ promptTokens: usage.input_tokens, completionTokens: usage.output_tokens },
).catch((err) => {
if (cache_creation > 0 || cache_read > 0) {
spendStructuredTokens(txMetadata, {
promptTokens: {
input: usage.input_tokens,
write: cache_creation,
read: cache_read,
},
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error(
'[api/server/controllers/agents/client.js #recordCollectedUsage] Error spending structured tokens',
err,
);
});
}
spendTokens(txMetadata, {
promptTokens: usage.input_tokens,
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error(
'[api/server/controllers/agents/client.js #recordCollectedUsage] Error spending tokens',
err,
@ -792,7 +821,10 @@ class AgentClient extends BaseClient {
throw new Error('Run not initialized');
}
const { handleLLMEnd, collected: collectedMetadata } = createMetadataAggregator();
const clientOptions = {};
/** @type {import('@librechat/agents').ClientOptions} */
const clientOptions = {
maxTokens: 75,
};
const providerConfig = this.options.req.app.locals[this.options.agent.provider];
if (
providerConfig &&

View file

@ -20,10 +20,19 @@ const addTitle = async (req, { text, response, client }) => {
const titleCache = getLogStores(CacheKeys.GEN_TITLE);
const key = `${req.user.id}-${response.conversationId}`;
const responseText =
response?.content && Array.isArray(response?.content)
? response.content.reduce((acc, block) => {
if (block?.type === 'text') {
return acc + block.text;
}
return acc;
}, '')
: (response?.content ?? response?.text ?? '');
const title = await client.titleConvo({
text,
responseText: response?.text ?? '',
responseText,
conversationId: response.conversationId,
});
await titleCache.set(key, title, 120000);

View file

@ -1,6 +1,6 @@
const { HttpsProxyAgent } = require('https-proxy-agent');
const { anthropicSettings, removeNullishValues } = require('librechat-data-provider');
const { checkPromptCacheSupport, getClaudeHeaders } = require('./helpers');
const { checkPromptCacheSupport, getClaudeHeaders, configureReasoning } = require('./helpers');
/**
* Generates configuration options for creating an Anthropic language model (LLM) instance.
@ -49,13 +49,14 @@ function getLLMConfig(apiKey, options = {}) {
clientOptions: {},
};
requestOptions = configureReasoning(requestOptions, systemOptions);
if (!/claude-3[-.]7/.test(mergedOptions.model)) {
if (mergedOptions.topP !== undefined) {
requestOptions.topP = mergedOptions.topP;
}
if (mergedOptions.topK !== undefined) {
requestOptions.topK = mergedOptions.topK;
}
requestOptions.topP = mergedOptions.topP;
requestOptions.topK = mergedOptions.topK;
} else if (requestOptions.thinking == null) {
requestOptions.topP = mergedOptions.topP;
requestOptions.topK = mergedOptions.topK;
}
const supportsCacheControl =

View file

@ -109,4 +109,45 @@ describe('getLLMConfig', () => {
// Just verifying that the promptCache setting is processed
expect(result.llmConfig).toBeDefined();
});
it('should include topK and topP for Claude-3.7 models when thinking is not enabled', () => {
// Test with thinking explicitly set to null/undefined
const result = getLLMConfig('test-api-key', {
modelOptions: {
model: 'claude-3-7-sonnet',
topK: 10,
topP: 0.9,
thinking: false,
},
});
expect(result.llmConfig).toHaveProperty('topK', 10);
expect(result.llmConfig).toHaveProperty('topP', 0.9);
// Test with thinking explicitly set to false
const result2 = getLLMConfig('test-api-key', {
modelOptions: {
model: 'claude-3-7-sonnet',
topK: 10,
topP: 0.9,
thinking: false,
},
});
expect(result2.llmConfig).toHaveProperty('topK', 10);
expect(result2.llmConfig).toHaveProperty('topP', 0.9);
// Test with decimal notation as well
const result3 = getLLMConfig('test-api-key', {
modelOptions: {
model: 'claude-3.7-sonnet',
topK: 10,
topP: 0.9,
thinking: false,
},
});
expect(result3.llmConfig).toHaveProperty('topK', 10);
expect(result3.llmConfig).toHaveProperty('topP', 0.9);
});
});

View file

@ -29,7 +29,6 @@ function getLLMConfig(apiKey, options = {}) {
const {
modelOptions = {},
reverseProxyUrl,
useOpenRouter,
defaultQuery,
headers,
proxy,
@ -56,9 +55,11 @@ function getLLMConfig(apiKey, options = {}) {
});
}
let useOpenRouter;
/** @type {OpenAIClientOptions['configuration']} */
const configOptions = {};
if (useOpenRouter || (reverseProxyUrl && reverseProxyUrl.includes(KnownEndpoints.openrouter))) {
if (reverseProxyUrl && reverseProxyUrl.includes(KnownEndpoints.openrouter)) {
useOpenRouter = true;
llmConfig.include_reasoning = true;
configOptions.baseURL = reverseProxyUrl;
configOptions.defaultHeaders = Object.assign(
@ -118,6 +119,13 @@ function getLLMConfig(apiKey, options = {}) {
llmConfig.organization = process.env.OPENAI_ORGANIZATION;
}
if (useOpenRouter && llmConfig.reasoning_effort != null) {
llmConfig.reasoning = {
effort: llmConfig.reasoning_effort,
};
delete llmConfig.reasoning_effort;
}
return {
/** @type {OpenAIClientOptions} */
llmConfig,