mirror of
https://github.com/danny-avila/LibreChat.git
synced 2026-02-22 10:24:09 +01:00
📦 fix: npm warnings; chore: bump deprecated packages (#4707)
* chore: bump langchain deps to address vulnerability warnings * chore: bump community package and install textsplitters package * fix: update expected result in tokenSplit tests for accuracy * chore: remove CodeSherpa tools * chore: remove E2B tools and loadToolSuite * chore: remove CodeBrew tool and update related references * chore: remove HumanTool and ChatTool, update tool references * chore: remove Zapier tool from manifest.json and update SerpAPI * chore: remove basic tools * chore: update import path for RecursiveCharacterTextSplitter * chore: update import path for DynamicStructuredTool * chore: remove extractionChain.js and update tool filtering logic * chore: npm audit fix * chore: bump google packages * chore: update DALL-E tool to DALL-E-3 and adjust authentication logic * ci: update message classes * chore: elliptic npm audit fix * chore: update CallbackManager import and remove deprecated tool handling logic * chore: imports order * chore: remove unused code --------- Co-authored-by: Max Sanna <max@maxsanna.com>
This commit is contained in:
parent
d012da0065
commit
95201908e9
40 changed files with 1446 additions and 3109 deletions
|
|
@ -1,122 +0,0 @@
|
|||
const { Agent } = require('langchain/agents');
|
||||
const { LLMChain } = require('langchain/chains');
|
||||
const { FunctionChatMessage, AIChatMessage } = require('langchain/schema');
|
||||
const {
|
||||
ChatPromptTemplate,
|
||||
MessagesPlaceholder,
|
||||
SystemMessagePromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
} = require('langchain/prompts');
|
||||
const { logger } = require('~/config');
|
||||
|
||||
const PREFIX = 'You are a helpful AI assistant.';
|
||||
|
||||
function parseOutput(message) {
|
||||
if (message.additional_kwargs.function_call) {
|
||||
const function_call = message.additional_kwargs.function_call;
|
||||
return {
|
||||
tool: function_call.name,
|
||||
toolInput: function_call.arguments ? JSON.parse(function_call.arguments) : {},
|
||||
log: message.text,
|
||||
};
|
||||
} else {
|
||||
return { returnValues: { output: message.text }, log: message.text };
|
||||
}
|
||||
}
|
||||
|
||||
class FunctionsAgent extends Agent {
|
||||
constructor(input) {
|
||||
super({ ...input, outputParser: undefined });
|
||||
this.tools = input.tools;
|
||||
}
|
||||
|
||||
lc_namespace = ['langchain', 'agents', 'openai'];
|
||||
|
||||
_agentType() {
|
||||
return 'openai-functions';
|
||||
}
|
||||
|
||||
observationPrefix() {
|
||||
return 'Observation: ';
|
||||
}
|
||||
|
||||
llmPrefix() {
|
||||
return 'Thought:';
|
||||
}
|
||||
|
||||
_stop() {
|
||||
return ['Observation:'];
|
||||
}
|
||||
|
||||
static createPrompt(_tools, fields) {
|
||||
const { prefix = PREFIX, currentDateString } = fields || {};
|
||||
|
||||
return ChatPromptTemplate.fromMessages([
|
||||
SystemMessagePromptTemplate.fromTemplate(`Date: ${currentDateString}\n${prefix}`),
|
||||
new MessagesPlaceholder('chat_history'),
|
||||
HumanMessagePromptTemplate.fromTemplate('Query: {input}'),
|
||||
new MessagesPlaceholder('agent_scratchpad'),
|
||||
]);
|
||||
}
|
||||
|
||||
static fromLLMAndTools(llm, tools, args) {
|
||||
FunctionsAgent.validateTools(tools);
|
||||
const prompt = FunctionsAgent.createPrompt(tools, args);
|
||||
const chain = new LLMChain({
|
||||
prompt,
|
||||
llm,
|
||||
callbacks: args?.callbacks,
|
||||
});
|
||||
return new FunctionsAgent({
|
||||
llmChain: chain,
|
||||
allowedTools: tools.map((t) => t.name),
|
||||
tools,
|
||||
});
|
||||
}
|
||||
|
||||
async constructScratchPad(steps) {
|
||||
return steps.flatMap(({ action, observation }) => [
|
||||
new AIChatMessage('', {
|
||||
function_call: {
|
||||
name: action.tool,
|
||||
arguments: JSON.stringify(action.toolInput),
|
||||
},
|
||||
}),
|
||||
new FunctionChatMessage(observation, action.tool),
|
||||
]);
|
||||
}
|
||||
|
||||
async plan(steps, inputs, callbackManager) {
|
||||
// Add scratchpad and stop to inputs
|
||||
const thoughts = await this.constructScratchPad(steps);
|
||||
const newInputs = Object.assign({}, inputs, { agent_scratchpad: thoughts });
|
||||
if (this._stop().length !== 0) {
|
||||
newInputs.stop = this._stop();
|
||||
}
|
||||
|
||||
// Split inputs between prompt and llm
|
||||
const llm = this.llmChain.llm;
|
||||
const valuesForPrompt = Object.assign({}, newInputs);
|
||||
const valuesForLLM = {
|
||||
tools: this.tools,
|
||||
};
|
||||
for (let i = 0; i < this.llmChain.llm.callKeys.length; i++) {
|
||||
const key = this.llmChain.llm.callKeys[i];
|
||||
if (key in inputs) {
|
||||
valuesForLLM[key] = inputs[key];
|
||||
delete valuesForPrompt[key];
|
||||
}
|
||||
}
|
||||
|
||||
const promptValue = await this.llmChain.prompt.formatPromptValue(valuesForPrompt);
|
||||
const message = await llm.predictMessages(
|
||||
promptValue.toChatMessages(),
|
||||
valuesForLLM,
|
||||
callbackManager,
|
||||
);
|
||||
logger.debug('[FunctionsAgent] plan message', message);
|
||||
return parseOutput(message);
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = FunctionsAgent;
|
||||
Loading…
Add table
Add a link
Reference in a new issue