🚧 WIP: Merge Dev Build (#4611)

* refactor: Agent CodeFiles, abortUpload WIP

* feat: code environment file upload

* refactor: useLazyEffect

* refactor:
- Add `watch` from `useFormContext` to check if code execution is enabled
- Disable file upload button if `agent_id` is not selected or code execution is disabled

* WIP: primeCodeFiles; refactor: rename sessionId to session_id for uniformity

* Refactor: Rename session_id to sessionId for uniformity in AuthService.js

* chore: bump @librechat/agents to version 1.7.1

* WIP: prime code files

* refactor: Update code env file upload method to use read stream

* feat: reupload code env file if no longer active

* refactor: isAssistantTool -> isEntityTool + address type issues

* feat: execute code tool hook

* refactor: Rename isPluginAuthenticated to checkPluginAuth in PluginController.js

* refactor: Update PluginController.js to use AuthType constant for comparison

* feat: verify tool authentication (execute_code)

* feat: enter librechat_code_api_key

* refactor: Remove unused imports in BookmarkForm.tsx

* feat: authenticate code tool

* refactor: Update Action.tsx to conditionally render the key and revoke key buttons

* refactor(Code/Action): prevent uncheck-able 'Run Code' capability when key is revoked

* refactor(Code/Action): Update Action.tsx to conditionally render the key and revoke key buttons

* fix: agent file upload edge cases

* chore: bump @librechat/agents

* fix: custom endpoint providerValue icon

* feat: ollama meta modal token values + context

* feat: ollama agents

* refactor: Update token models for Ollama models

* chore: Comment out CodeForm

* refactor: Update token models for Ollama and Meta models
This commit is contained in:
Danny Avila 2024-11-01 18:36:39 -04:00 committed by GitHub
parent 1909efd6ba
commit 95011ce349
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
58 changed files with 1418 additions and 1002 deletions

View file

@ -77,13 +77,27 @@ const anthropicModels = {
};
const metaModels = {
'llama2-13b': 4000,
'llama2-70b': 4000,
'llama3-8b': 8000,
'llama3-70b': 8000,
'llama3-1-8b': 127500,
'llama3-1-70b': 127500,
llama3: 8000,
llama2: 4000,
'llama3.1': 127500,
'llama3-1': 127500,
'llama3.1:405b': 127500,
'llama3.1:70b': 127500,
'llama3.1:8b': 127500,
'llama3-1-405b': 127500,
'llama3-1-70b': 127500,
'llama3-1-8b': 127500,
'llama3-70b': 8000,
'llama3-8b': 8000,
'llama2-70b': 4000,
'llama2-13b': 4000,
'llama3:70b': 8000,
'llama3:8b': 8000,
'llama2:70b': 4000,
};
const ollamaModels = {
'qwen2.5': 32000,
};
const ai21Models = {
@ -102,6 +116,7 @@ const bedrockModels = {
...anthropicModels,
...mistralModels,
...cohereModels,
...ollamaModels,
...metaModels,
...ai21Models,
...amazonModels,

View file

@ -1,5 +1,5 @@
const { EModelEndpoint } = require('librechat-data-provider');
const { getModelMaxTokens, matchModelName, maxTokensMap } = require('./tokens');
const { getModelMaxTokens, processModelData, matchModelName, maxTokensMap } = require('./tokens');
describe('getModelMaxTokens', () => {
test('should return correct tokens for exact match', () => {
@ -317,3 +317,108 @@ describe('matchModelName', () => {
expect(matchModelName('chat-', EModelEndpoint.google)).toBe('chat-');
});
});
describe('Meta Models Tests', () => {
describe('getModelMaxTokens', () => {
test('should return correct tokens for LLaMa 2 models', () => {
expect(getModelMaxTokens('llama2')).toBe(4000);
expect(getModelMaxTokens('llama2.70b')).toBe(4000);
expect(getModelMaxTokens('llama2-13b')).toBe(4000);
expect(getModelMaxTokens('llama2-70b')).toBe(4000);
});
test('should return correct tokens for LLaMa 3 models', () => {
expect(getModelMaxTokens('llama3')).toBe(8000);
expect(getModelMaxTokens('llama3.8b')).toBe(8000);
expect(getModelMaxTokens('llama3.70b')).toBe(8000);
expect(getModelMaxTokens('llama3-8b')).toBe(8000);
expect(getModelMaxTokens('llama3-70b')).toBe(8000);
});
test('should return correct tokens for LLaMa 3.1 models', () => {
expect(getModelMaxTokens('llama3.1:8b')).toBe(127500);
expect(getModelMaxTokens('llama3.1:70b')).toBe(127500);
expect(getModelMaxTokens('llama3.1:405b')).toBe(127500);
expect(getModelMaxTokens('llama3-1-8b')).toBe(127500);
expect(getModelMaxTokens('llama3-1-70b')).toBe(127500);
expect(getModelMaxTokens('llama3-1-405b')).toBe(127500);
});
test('should handle partial matches for Meta models', () => {
// Test with full model names
expect(getModelMaxTokens('meta/llama3.1:405b')).toBe(127500);
expect(getModelMaxTokens('meta/llama3.1:70b')).toBe(127500);
expect(getModelMaxTokens('meta/llama3.1:8b')).toBe(127500);
expect(getModelMaxTokens('meta/llama3-1-8b')).toBe(127500);
// Test base versions
expect(getModelMaxTokens('meta/llama3.1')).toBe(127500);
expect(getModelMaxTokens('meta/llama3-1')).toBe(127500);
expect(getModelMaxTokens('meta/llama3')).toBe(8000);
expect(getModelMaxTokens('meta/llama2')).toBe(4000);
});
});
describe('matchModelName', () => {
test('should match exact LLaMa model names', () => {
expect(matchModelName('llama2')).toBe('llama2');
expect(matchModelName('llama3')).toBe('llama3');
expect(matchModelName('llama3.1:8b')).toBe('llama3.1:8b');
});
test('should match LLaMa model variations', () => {
// Test full model names
expect(matchModelName('meta/llama3.1:405b')).toBe('llama3.1:405b');
expect(matchModelName('meta/llama3.1:70b')).toBe('llama3.1:70b');
expect(matchModelName('meta/llama3.1:8b')).toBe('llama3.1:8b');
expect(matchModelName('meta/llama3-1-8b')).toBe('llama3-1-8b');
// Test base versions
expect(matchModelName('meta/llama3.1')).toBe('llama3.1');
expect(matchModelName('meta/llama3-1')).toBe('llama3-1');
});
test('should handle custom endpoint for Meta models', () => {
expect(matchModelName('llama2', EModelEndpoint.bedrock)).toBe('llama2');
expect(matchModelName('llama3', EModelEndpoint.bedrock)).toBe('llama3');
expect(matchModelName('llama3.1:8b', EModelEndpoint.bedrock)).toBe('llama3.1:8b');
});
});
describe('processModelData with Meta models', () => {
test('should process Meta model data correctly', () => {
const input = {
data: [
{
id: 'llama2',
pricing: {
prompt: '0.00001',
completion: '0.00003',
},
context_length: 4000,
},
{
id: 'llama3',
pricing: {
prompt: '0.00002',
completion: '0.00004',
},
context_length: 8000,
},
],
};
const result = processModelData(input);
expect(result.llama2).toEqual({
prompt: 10,
completion: 30,
context: 4000,
});
expect(result.llama3).toEqual({
prompt: 20,
completion: 40,
context: 8000,
});
});
});
});