mirror of
https://github.com/danny-avila/LibreChat.git
synced 2026-01-03 09:08:52 +01:00
🤖 feat: Agent Handoffs (Routing) (#10176)
* feat: Add support for agent handoffs with edges in agent forms and schemas chore: Mark `agent_ids` field as deprecated in favor of edges across various schemas and types chore: Update dependencies for @langchain/core and @librechat/agents to latest versions chore: Update peer dependency for @librechat/agents to version 3.0.0-rc2 in package.json chore: Update @librechat/agents dependency to version 3.0.0-rc3 in package.json and package-lock.json feat: first pass, multi-agent handoffs fix: update output type to ToolMessage in memory handling functions fix: improve type checking for graphConfig in createRun function refactor: remove unused content filtering logic in AgentClient chore: update @librechat/agents dependency to version 3.0.0-rc4 in package.json and package-lock.json fix: update @langchain/core peer dependency version to ^0.3.72 in package.json and package-lock.json fix: update @librechat/agents dependency to version 3.0.0-rc6 in package.json and package-lock.json; refactor stream rate handling in various endpoints feat: Agent handoff UI chore: update @librechat/agents dependency to version 3.0.0-rc8 in package.json and package-lock.json fix: improve hasInfo condition and adjust UI element classes in AgentHandoff component refactor: remove current fixed agent display from AgentHandoffs component due to redundancy feat: enhance AgentHandoffs UI with localized beta label and improved layout chore: update @librechat/agents dependency to version 3.0.0-rc10 in package.json and package-lock.json feat: add `createSequentialChainEdges` function to add back agent chaining via multi-agents feat: update `createSequentialChainEdges` call to only provide conversation context between agents feat: deprecate Agent Chain functionality and update related methods for improved clarity * chore: update @librechat/agents dependency to version 3.0.0-rc11 in package.json and package-lock.json * refactor: remove unused addCacheControl function and related imports and import from @librechat/agents * chore: remove unused i18n keys * refactor: remove unused format export from index.ts * chore: update @librechat/agents to v3.0.0-rc13 * chore: remove BEDROCK_LEGACY provider from Providers enum * chore: update @librechat/agents to version 3.0.2 in package.json
This commit is contained in:
parent
958a6c7872
commit
8a4a5a4790
41 changed files with 1108 additions and 3810 deletions
47
packages/api/src/agents/chain.ts
Normal file
47
packages/api/src/agents/chain.ts
Normal file
|
|
@ -0,0 +1,47 @@
|
|||
import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import { BaseMessage, getBufferString } from '@langchain/core/messages';
|
||||
import type { GraphEdge } from '@librechat/agents';
|
||||
|
||||
const DEFAULT_PROMPT_TEMPLATE = `Based on the following conversation and analysis from previous agents, please provide your insights:\n\n{convo}\n\nPlease add your specific expertise and perspective to this discussion.`;
|
||||
|
||||
/**
|
||||
* Helper function to create sequential chain edges with buffer string prompts
|
||||
*
|
||||
* @deprecated Agent Chain helper
|
||||
* @param agentIds - Array of agent IDs in order of execution
|
||||
* @param promptTemplate - Optional prompt template string; defaults to a predefined template if not provided
|
||||
* @returns Array of edges configured for sequential chain with buffer prompts
|
||||
*/
|
||||
export async function createSequentialChainEdges(
|
||||
agentIds: string[],
|
||||
promptTemplate = DEFAULT_PROMPT_TEMPLATE,
|
||||
): Promise<GraphEdge[]> {
|
||||
const edges: GraphEdge[] = [];
|
||||
|
||||
for (let i = 0; i < agentIds.length - 1; i++) {
|
||||
const fromAgent = agentIds[i];
|
||||
const toAgent = agentIds[i + 1];
|
||||
|
||||
edges.push({
|
||||
from: fromAgent,
|
||||
to: toAgent,
|
||||
edgeType: 'direct',
|
||||
// Use a prompt function to create the buffer string from all previous results
|
||||
prompt: async (messages: BaseMessage[], startIndex: number) => {
|
||||
/** Only the messages from this run (after startIndex) are passed in */
|
||||
const runMessages = messages.slice(startIndex);
|
||||
const bufferString = getBufferString(runMessages);
|
||||
const template = PromptTemplate.fromTemplate(promptTemplate);
|
||||
const result = await template.invoke({
|
||||
convo: bufferString,
|
||||
});
|
||||
return result.value;
|
||||
},
|
||||
/** Critical: exclude previous results so only the prompt is passed */
|
||||
excludeResults: true,
|
||||
description: `Sequential chain from ${fromAgent} to ${toAgent}`,
|
||||
});
|
||||
}
|
||||
|
||||
return edges;
|
||||
}
|
||||
|
|
@ -1,3 +1,4 @@
|
|||
export * from './chain';
|
||||
export * from './memory';
|
||||
export * from './migration';
|
||||
export * from './legacy';
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ import type {
|
|||
} from '@librechat/agents';
|
||||
import type { TAttachment, MemoryArtifact } from 'librechat-data-provider';
|
||||
import type { ObjectId, MemoryMethods } from '@librechat/data-schemas';
|
||||
import type { BaseMessage } from '@langchain/core/messages';
|
||||
import type { BaseMessage, ToolMessage } from '@langchain/core/messages';
|
||||
import type { Response as ServerResponse } from 'express';
|
||||
import { Tokenizer } from '~/utils';
|
||||
|
||||
|
|
@ -466,7 +466,7 @@ async function handleMemoryArtifact({
|
|||
data: ToolEndData;
|
||||
metadata?: ToolEndMetadata;
|
||||
}) {
|
||||
const output = data?.output;
|
||||
const output = data?.output as ToolMessage | undefined;
|
||||
if (!output) {
|
||||
return null;
|
||||
}
|
||||
|
|
@ -509,7 +509,7 @@ export function createMemoryCallback({
|
|||
artifactPromises: Promise<Partial<TAttachment> | null>[];
|
||||
}): ToolEndCallback {
|
||||
return async (data: ToolEndData, metadata?: Record<string, unknown>) => {
|
||||
const output = data?.output;
|
||||
const output = data?.output as ToolMessage | undefined;
|
||||
const memoryArtifact = output?.artifact?.[Tools.memory] as MemoryArtifact;
|
||||
if (memoryArtifact == null) {
|
||||
return;
|
||||
|
|
|
|||
|
|
@ -1,15 +1,17 @@
|
|||
import { Run, Providers } from '@librechat/agents';
|
||||
import { providerEndpointMap, KnownEndpoints } from 'librechat-data-provider';
|
||||
import type {
|
||||
MultiAgentGraphConfig,
|
||||
OpenAIClientOptions,
|
||||
StandardGraphConfig,
|
||||
EventHandler,
|
||||
AgentInputs,
|
||||
GenericTool,
|
||||
GraphEvents,
|
||||
RunConfig,
|
||||
IState,
|
||||
} from '@librechat/agents';
|
||||
import type { Agent } from 'librechat-data-provider';
|
||||
import type * as t from '~/types';
|
||||
import { resolveHeaders } from '~/utils/env';
|
||||
|
||||
const customProviders = new Set([
|
||||
Providers.XAI,
|
||||
|
|
@ -40,13 +42,18 @@ export function getReasoningKey(
|
|||
return reasoningKey;
|
||||
}
|
||||
|
||||
type RunAgent = Omit<Agent, 'tools'> & {
|
||||
tools?: GenericTool[];
|
||||
maxContextTokens?: number;
|
||||
toolContextMap?: Record<string, string>;
|
||||
};
|
||||
|
||||
/**
|
||||
* Creates a new Run instance with custom handlers and configuration.
|
||||
*
|
||||
* @param options - The options for creating the Run instance.
|
||||
* @param options.agent - The agent for this run.
|
||||
* @param options.agents - The agents for this run.
|
||||
* @param options.signal - The signal for this run.
|
||||
* @param options.req - The server request.
|
||||
* @param options.runId - Optional run ID; otherwise, a new run ID will be generated.
|
||||
* @param options.customHandlers - Custom event handlers.
|
||||
* @param options.streaming - Whether to use streaming.
|
||||
|
|
@ -55,61 +62,108 @@ export function getReasoningKey(
|
|||
*/
|
||||
export async function createRun({
|
||||
runId,
|
||||
agent,
|
||||
signal,
|
||||
agents,
|
||||
requestBody,
|
||||
tokenCounter,
|
||||
customHandlers,
|
||||
indexTokenCountMap,
|
||||
streaming = true,
|
||||
streamUsage = true,
|
||||
}: {
|
||||
agent: Omit<Agent, 'tools'> & { tools?: GenericTool[] };
|
||||
agents: RunAgent[];
|
||||
signal: AbortSignal;
|
||||
runId?: string;
|
||||
streaming?: boolean;
|
||||
streamUsage?: boolean;
|
||||
customHandlers?: Record<GraphEvents, EventHandler>;
|
||||
}): Promise<Run<IState>> {
|
||||
const provider =
|
||||
(providerEndpointMap[
|
||||
agent.provider as keyof typeof providerEndpointMap
|
||||
] as unknown as Providers) ?? agent.provider;
|
||||
requestBody?: t.RequestBody;
|
||||
} & Pick<RunConfig, 'tokenCounter' | 'customHandlers' | 'indexTokenCountMap'>): Promise<
|
||||
Run<IState>
|
||||
> {
|
||||
const agentInputs: AgentInputs[] = [];
|
||||
const buildAgentContext = (agent: RunAgent) => {
|
||||
const provider =
|
||||
(providerEndpointMap[
|
||||
agent.provider as keyof typeof providerEndpointMap
|
||||
] as unknown as Providers) ?? agent.provider;
|
||||
|
||||
const llmConfig: t.RunLLMConfig = Object.assign(
|
||||
{
|
||||
const llmConfig: t.RunLLMConfig = Object.assign(
|
||||
{
|
||||
provider,
|
||||
streaming,
|
||||
streamUsage,
|
||||
},
|
||||
agent.model_parameters,
|
||||
);
|
||||
|
||||
const systemMessage = Object.values(agent.toolContextMap ?? {})
|
||||
.join('\n')
|
||||
.trim();
|
||||
|
||||
const systemContent = [
|
||||
systemMessage,
|
||||
agent.instructions ?? '',
|
||||
agent.additional_instructions ?? '',
|
||||
]
|
||||
.join('\n')
|
||||
.trim();
|
||||
|
||||
/**
|
||||
* Resolve request-based headers for Custom Endpoints. Note: if this is added to
|
||||
* non-custom endpoints, needs consideration of varying provider header configs.
|
||||
* This is done at this step because the request body may contain dynamic values
|
||||
* that need to be resolved after agent initialization.
|
||||
*/
|
||||
if (llmConfig?.configuration?.defaultHeaders != null) {
|
||||
llmConfig.configuration.defaultHeaders = resolveHeaders({
|
||||
headers: llmConfig.configuration.defaultHeaders as Record<string, string>,
|
||||
body: requestBody,
|
||||
});
|
||||
}
|
||||
|
||||
/** Resolves issues with new OpenAI usage field */
|
||||
if (
|
||||
customProviders.has(agent.provider) ||
|
||||
(agent.provider === Providers.OPENAI && agent.endpoint !== agent.provider)
|
||||
) {
|
||||
llmConfig.streamUsage = false;
|
||||
llmConfig.usage = true;
|
||||
}
|
||||
|
||||
const reasoningKey = getReasoningKey(provider, llmConfig, agent.endpoint);
|
||||
const agentInput: AgentInputs = {
|
||||
provider,
|
||||
streaming,
|
||||
streamUsage,
|
||||
},
|
||||
agent.model_parameters,
|
||||
);
|
||||
|
||||
/** Resolves issues with new OpenAI usage field */
|
||||
if (
|
||||
customProviders.has(agent.provider) ||
|
||||
(agent.provider === Providers.OPENAI && agent.endpoint !== agent.provider)
|
||||
) {
|
||||
llmConfig.streamUsage = false;
|
||||
llmConfig.usage = true;
|
||||
}
|
||||
|
||||
const reasoningKey = getReasoningKey(provider, llmConfig, agent.endpoint);
|
||||
const graphConfig: StandardGraphConfig = {
|
||||
signal,
|
||||
llmConfig,
|
||||
reasoningKey,
|
||||
tools: agent.tools,
|
||||
instructions: agent.instructions,
|
||||
additional_instructions: agent.additional_instructions,
|
||||
// toolEnd: agent.end_after_tools,
|
||||
reasoningKey,
|
||||
agentId: agent.id,
|
||||
tools: agent.tools,
|
||||
clientOptions: llmConfig,
|
||||
instructions: systemContent,
|
||||
maxContextTokens: agent.maxContextTokens,
|
||||
};
|
||||
agentInputs.push(agentInput);
|
||||
};
|
||||
|
||||
// TEMPORARY FOR TESTING
|
||||
if (agent.provider === Providers.ANTHROPIC || agent.provider === Providers.BEDROCK) {
|
||||
graphConfig.streamBuffer = 2000;
|
||||
for (const agent of agents) {
|
||||
buildAgentContext(agent);
|
||||
}
|
||||
|
||||
const graphConfig: RunConfig['graphConfig'] = {
|
||||
signal,
|
||||
agents: agentInputs,
|
||||
edges: agents[0].edges,
|
||||
};
|
||||
|
||||
if (agentInputs.length > 1 || ((graphConfig as MultiAgentGraphConfig).edges?.length ?? 0) > 0) {
|
||||
(graphConfig as unknown as MultiAgentGraphConfig).type = 'multi-agent';
|
||||
} else {
|
||||
(graphConfig as StandardGraphConfig).type = 'standard';
|
||||
}
|
||||
|
||||
return Run.create({
|
||||
runId,
|
||||
graphConfig,
|
||||
tokenCounter,
|
||||
customHandlers,
|
||||
indexTokenCountMap,
|
||||
});
|
||||
}
|
||||
|
|
|
|||
|
|
@ -40,6 +40,17 @@ export const agentSupportContactSchema = z
|
|||
})
|
||||
.optional();
|
||||
|
||||
/** Graph edge schema for agent handoffs */
|
||||
export const graphEdgeSchema = z.object({
|
||||
from: z.union([z.string(), z.array(z.string())]),
|
||||
to: z.union([z.string(), z.array(z.string())]),
|
||||
description: z.string().optional(),
|
||||
edgeType: z.enum(['handoff', 'direct']).optional(),
|
||||
prompt: z.union([z.string(), z.function()]).optional(),
|
||||
excludeResults: z.boolean().optional(),
|
||||
promptKey: z.string().optional(),
|
||||
});
|
||||
|
||||
/** Base agent schema with all common fields */
|
||||
export const agentBaseSchema = z.object({
|
||||
name: z.string().nullable().optional(),
|
||||
|
|
@ -48,7 +59,9 @@ export const agentBaseSchema = z.object({
|
|||
avatar: agentAvatarSchema.nullable().optional(),
|
||||
model_parameters: z.record(z.unknown()).optional(),
|
||||
tools: z.array(z.string()).optional(),
|
||||
/** @deprecated Use edges instead */
|
||||
agent_ids: z.array(z.string()).optional(),
|
||||
edges: z.array(graphEdgeSchema).optional(),
|
||||
end_after_tools: z.boolean().optional(),
|
||||
hide_sequential_outputs: z.boolean().optional(),
|
||||
artifacts: z.string().optional(),
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue