🤖 feat: Agent Handoffs (Routing) (#10176)

* feat: Add support for agent handoffs with edges in agent forms and schemas

chore: Mark `agent_ids` field as deprecated in favor of edges across various schemas and types

chore: Update dependencies for @langchain/core and @librechat/agents to latest versions

chore: Update peer dependency for @librechat/agents to version 3.0.0-rc2 in package.json

chore: Update @librechat/agents dependency to version 3.0.0-rc3 in package.json and package-lock.json

feat: first pass, multi-agent handoffs

fix: update output type to ToolMessage in memory handling functions

fix: improve type checking for graphConfig in createRun function

refactor: remove unused content filtering logic in AgentClient

chore: update @librechat/agents dependency to version 3.0.0-rc4 in package.json and package-lock.json

fix: update @langchain/core peer dependency version to ^0.3.72 in package.json and package-lock.json

fix: update @librechat/agents dependency to version 3.0.0-rc6 in package.json and package-lock.json; refactor stream rate handling in various endpoints

feat: Agent handoff UI

chore: update @librechat/agents dependency to version 3.0.0-rc8 in package.json and package-lock.json

fix: improve hasInfo condition and adjust UI element classes in AgentHandoff component

refactor: remove current fixed agent display from AgentHandoffs component due to redundancy

feat: enhance AgentHandoffs UI with localized beta label and improved layout

chore: update @librechat/agents dependency to version 3.0.0-rc10 in package.json and package-lock.json

feat: add `createSequentialChainEdges` function to add back agent chaining via multi-agents

feat: update `createSequentialChainEdges` call to only provide conversation context between agents

feat: deprecate Agent Chain functionality and update related methods for improved clarity

* chore: update @librechat/agents dependency to version 3.0.0-rc11 in package.json and package-lock.json

* refactor: remove unused addCacheControl function and related imports and import from @librechat/agents

* chore: remove unused i18n keys

* refactor: remove unused format export from index.ts

* chore: update @librechat/agents to v3.0.0-rc13

* chore: remove BEDROCK_LEGACY provider from Providers enum

* chore: update @librechat/agents to version 3.0.2 in package.json
This commit is contained in:
Danny Avila 2025-11-05 17:15:17 -05:00 committed by GitHub
parent 958a6c7872
commit 8a4a5a4790
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
41 changed files with 1108 additions and 3810 deletions

View file

@ -81,8 +81,8 @@
"@azure/search-documents": "^12.0.0",
"@azure/storage-blob": "^12.27.0",
"@keyv/redis": "^4.3.3",
"@langchain/core": "^0.3.62",
"@librechat/agents": "^2.4.90",
"@langchain/core": "^0.3.72",
"@librechat/agents": "^3.0.2",
"@librechat/data-schemas": "*",
"@modelcontextprotocol/sdk": "^1.17.1",
"axios": "^1.12.1",

View file

@ -0,0 +1,47 @@
import { PromptTemplate } from '@langchain/core/prompts';
import { BaseMessage, getBufferString } from '@langchain/core/messages';
import type { GraphEdge } from '@librechat/agents';
const DEFAULT_PROMPT_TEMPLATE = `Based on the following conversation and analysis from previous agents, please provide your insights:\n\n{convo}\n\nPlease add your specific expertise and perspective to this discussion.`;
/**
* Helper function to create sequential chain edges with buffer string prompts
*
* @deprecated Agent Chain helper
* @param agentIds - Array of agent IDs in order of execution
* @param promptTemplate - Optional prompt template string; defaults to a predefined template if not provided
* @returns Array of edges configured for sequential chain with buffer prompts
*/
export async function createSequentialChainEdges(
agentIds: string[],
promptTemplate = DEFAULT_PROMPT_TEMPLATE,
): Promise<GraphEdge[]> {
const edges: GraphEdge[] = [];
for (let i = 0; i < agentIds.length - 1; i++) {
const fromAgent = agentIds[i];
const toAgent = agentIds[i + 1];
edges.push({
from: fromAgent,
to: toAgent,
edgeType: 'direct',
// Use a prompt function to create the buffer string from all previous results
prompt: async (messages: BaseMessage[], startIndex: number) => {
/** Only the messages from this run (after startIndex) are passed in */
const runMessages = messages.slice(startIndex);
const bufferString = getBufferString(runMessages);
const template = PromptTemplate.fromTemplate(promptTemplate);
const result = await template.invoke({
convo: bufferString,
});
return result.value;
},
/** Critical: exclude previous results so only the prompt is passed */
excludeResults: true,
description: `Sequential chain from ${fromAgent} to ${toAgent}`,
});
}
return edges;
}

View file

@ -1,3 +1,4 @@
export * from './chain';
export * from './memory';
export * from './migration';
export * from './legacy';

View file

@ -15,7 +15,7 @@ import type {
} from '@librechat/agents';
import type { TAttachment, MemoryArtifact } from 'librechat-data-provider';
import type { ObjectId, MemoryMethods } from '@librechat/data-schemas';
import type { BaseMessage } from '@langchain/core/messages';
import type { BaseMessage, ToolMessage } from '@langchain/core/messages';
import type { Response as ServerResponse } from 'express';
import { Tokenizer } from '~/utils';
@ -466,7 +466,7 @@ async function handleMemoryArtifact({
data: ToolEndData;
metadata?: ToolEndMetadata;
}) {
const output = data?.output;
const output = data?.output as ToolMessage | undefined;
if (!output) {
return null;
}
@ -509,7 +509,7 @@ export function createMemoryCallback({
artifactPromises: Promise<Partial<TAttachment> | null>[];
}): ToolEndCallback {
return async (data: ToolEndData, metadata?: Record<string, unknown>) => {
const output = data?.output;
const output = data?.output as ToolMessage | undefined;
const memoryArtifact = output?.artifact?.[Tools.memory] as MemoryArtifact;
if (memoryArtifact == null) {
return;

View file

@ -1,15 +1,17 @@
import { Run, Providers } from '@librechat/agents';
import { providerEndpointMap, KnownEndpoints } from 'librechat-data-provider';
import type {
MultiAgentGraphConfig,
OpenAIClientOptions,
StandardGraphConfig,
EventHandler,
AgentInputs,
GenericTool,
GraphEvents,
RunConfig,
IState,
} from '@librechat/agents';
import type { Agent } from 'librechat-data-provider';
import type * as t from '~/types';
import { resolveHeaders } from '~/utils/env';
const customProviders = new Set([
Providers.XAI,
@ -40,13 +42,18 @@ export function getReasoningKey(
return reasoningKey;
}
type RunAgent = Omit<Agent, 'tools'> & {
tools?: GenericTool[];
maxContextTokens?: number;
toolContextMap?: Record<string, string>;
};
/**
* Creates a new Run instance with custom handlers and configuration.
*
* @param options - The options for creating the Run instance.
* @param options.agent - The agent for this run.
* @param options.agents - The agents for this run.
* @param options.signal - The signal for this run.
* @param options.req - The server request.
* @param options.runId - Optional run ID; otherwise, a new run ID will be generated.
* @param options.customHandlers - Custom event handlers.
* @param options.streaming - Whether to use streaming.
@ -55,61 +62,108 @@ export function getReasoningKey(
*/
export async function createRun({
runId,
agent,
signal,
agents,
requestBody,
tokenCounter,
customHandlers,
indexTokenCountMap,
streaming = true,
streamUsage = true,
}: {
agent: Omit<Agent, 'tools'> & { tools?: GenericTool[] };
agents: RunAgent[];
signal: AbortSignal;
runId?: string;
streaming?: boolean;
streamUsage?: boolean;
customHandlers?: Record<GraphEvents, EventHandler>;
}): Promise<Run<IState>> {
const provider =
(providerEndpointMap[
agent.provider as keyof typeof providerEndpointMap
] as unknown as Providers) ?? agent.provider;
requestBody?: t.RequestBody;
} & Pick<RunConfig, 'tokenCounter' | 'customHandlers' | 'indexTokenCountMap'>): Promise<
Run<IState>
> {
const agentInputs: AgentInputs[] = [];
const buildAgentContext = (agent: RunAgent) => {
const provider =
(providerEndpointMap[
agent.provider as keyof typeof providerEndpointMap
] as unknown as Providers) ?? agent.provider;
const llmConfig: t.RunLLMConfig = Object.assign(
{
const llmConfig: t.RunLLMConfig = Object.assign(
{
provider,
streaming,
streamUsage,
},
agent.model_parameters,
);
const systemMessage = Object.values(agent.toolContextMap ?? {})
.join('\n')
.trim();
const systemContent = [
systemMessage,
agent.instructions ?? '',
agent.additional_instructions ?? '',
]
.join('\n')
.trim();
/**
* Resolve request-based headers for Custom Endpoints. Note: if this is added to
* non-custom endpoints, needs consideration of varying provider header configs.
* This is done at this step because the request body may contain dynamic values
* that need to be resolved after agent initialization.
*/
if (llmConfig?.configuration?.defaultHeaders != null) {
llmConfig.configuration.defaultHeaders = resolveHeaders({
headers: llmConfig.configuration.defaultHeaders as Record<string, string>,
body: requestBody,
});
}
/** Resolves issues with new OpenAI usage field */
if (
customProviders.has(agent.provider) ||
(agent.provider === Providers.OPENAI && agent.endpoint !== agent.provider)
) {
llmConfig.streamUsage = false;
llmConfig.usage = true;
}
const reasoningKey = getReasoningKey(provider, llmConfig, agent.endpoint);
const agentInput: AgentInputs = {
provider,
streaming,
streamUsage,
},
agent.model_parameters,
);
/** Resolves issues with new OpenAI usage field */
if (
customProviders.has(agent.provider) ||
(agent.provider === Providers.OPENAI && agent.endpoint !== agent.provider)
) {
llmConfig.streamUsage = false;
llmConfig.usage = true;
}
const reasoningKey = getReasoningKey(provider, llmConfig, agent.endpoint);
const graphConfig: StandardGraphConfig = {
signal,
llmConfig,
reasoningKey,
tools: agent.tools,
instructions: agent.instructions,
additional_instructions: agent.additional_instructions,
// toolEnd: agent.end_after_tools,
reasoningKey,
agentId: agent.id,
tools: agent.tools,
clientOptions: llmConfig,
instructions: systemContent,
maxContextTokens: agent.maxContextTokens,
};
agentInputs.push(agentInput);
};
// TEMPORARY FOR TESTING
if (agent.provider === Providers.ANTHROPIC || agent.provider === Providers.BEDROCK) {
graphConfig.streamBuffer = 2000;
for (const agent of agents) {
buildAgentContext(agent);
}
const graphConfig: RunConfig['graphConfig'] = {
signal,
agents: agentInputs,
edges: agents[0].edges,
};
if (agentInputs.length > 1 || ((graphConfig as MultiAgentGraphConfig).edges?.length ?? 0) > 0) {
(graphConfig as unknown as MultiAgentGraphConfig).type = 'multi-agent';
} else {
(graphConfig as StandardGraphConfig).type = 'standard';
}
return Run.create({
runId,
graphConfig,
tokenCounter,
customHandlers,
indexTokenCountMap,
});
}

View file

@ -40,6 +40,17 @@ export const agentSupportContactSchema = z
})
.optional();
/** Graph edge schema for agent handoffs */
export const graphEdgeSchema = z.object({
from: z.union([z.string(), z.array(z.string())]),
to: z.union([z.string(), z.array(z.string())]),
description: z.string().optional(),
edgeType: z.enum(['handoff', 'direct']).optional(),
prompt: z.union([z.string(), z.function()]).optional(),
excludeResults: z.boolean().optional(),
promptKey: z.string().optional(),
});
/** Base agent schema with all common fields */
export const agentBaseSchema = z.object({
name: z.string().nullable().optional(),
@ -48,7 +59,9 @@ export const agentBaseSchema = z.object({
avatar: agentAvatarSchema.nullable().optional(),
model_parameters: z.record(z.unknown()).optional(),
tools: z.array(z.string()).optional(),
/** @deprecated Use edges instead */
agent_ids: z.array(z.string()).optional(),
edges: z.array(graphEdgeSchema).optional(),
end_after_tools: z.boolean().optional(),
hide_sequential_outputs: z.boolean().optional(),
artifacts: z.string().optional(),

View file

@ -1,11 +1,10 @@
import { ErrorTypes, EModelEndpoint, mapModelToAzureConfig } from 'librechat-data-provider';
import type {
InitializeOpenAIOptionsParams,
OpenAIOptionsResult,
OpenAIConfigOptions,
LLMConfigResult,
UserKeyValues,
} from '~/types';
import { createHandleLLMNewToken } from '~/utils/generators';
import { getAzureCredentials } from '~/utils/azure';
import { isUserProvided } from '~/utils/common';
import { resolveHeaders } from '~/utils/env';
@ -27,7 +26,7 @@ export const initializeOpenAI = async ({
overrideEndpoint,
getUserKeyValues,
checkUserKeyExpiry,
}: InitializeOpenAIOptionsParams): Promise<OpenAIOptionsResult> => {
}: InitializeOpenAIOptionsParams): Promise<LLMConfigResult> => {
const { PROXY, OPENAI_API_KEY, AZURE_API_KEY, OPENAI_REVERSE_PROXY, AZURE_OPENAI_BASEURL } =
process.env;
@ -160,17 +159,8 @@ export const initializeOpenAI = async ({
}
if (streamRate) {
options.llmConfig.callbacks = [
{
handleLLMNewToken: createHandleLLMNewToken(streamRate),
},
];
options.llmConfig._lc_stream_delay = streamRate;
}
const result: OpenAIOptionsResult = {
...options,
streamRate,
};
return result;
return options;
};

View file

@ -1,340 +0,0 @@
import { ContentTypes } from 'librechat-data-provider';
import { HumanMessage, AIMessage, SystemMessage } from '@langchain/core/messages';
import { formatContentStrings } from './content';
describe('formatContentStrings', () => {
describe('Human messages', () => {
it('should convert human message with all text blocks to string', () => {
const messages = [
new HumanMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Hello' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'World' },
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toBe('Hello\nWorld');
});
it('should not convert human message with mixed content types (text + image)', () => {
const messages = [
new HumanMessage({
content: [
{ type: ContentTypes.TEXT, text: 'what do you see' },
{
type: 'image_url',
image_url: {
url: '_SOME_BASE64_DATA=',
detail: 'auto',
},
},
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toEqual([
{ type: ContentTypes.TEXT, text: 'what do you see' },
{
type: 'image_url',
image_url: {
url: '_SOME_BASE64_DATA=',
detail: 'auto',
},
},
]);
});
it('should leave string content unchanged', () => {
const messages = [
new HumanMessage({
content: 'Hello World',
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toBe('Hello World');
});
it('should handle empty text blocks', () => {
const messages = [
new HumanMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Hello' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: '' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'World' },
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toBe('Hello\n\nWorld');
});
it('should handle null/undefined text values', () => {
const messages = [
new HumanMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Hello' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: null },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: undefined },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'World' },
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toBe('Hello\n\n\nWorld');
});
});
describe('AI messages', () => {
it('should convert AI message with all text blocks to string', () => {
const messages = [
new AIMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Hello' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'World' },
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toBe('Hello\nWorld');
expect(result[0].getType()).toBe('ai');
});
it('should not convert AI message with mixed content types', () => {
const messages = [
new AIMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Here is an image' },
{ type: ContentTypes.TOOL_CALL, tool_call: { name: 'generate_image' } },
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toEqual([
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Here is an image' },
{ type: ContentTypes.TOOL_CALL, tool_call: { name: 'generate_image' } },
]);
});
});
describe('System messages', () => {
it('should convert System message with all text blocks to string', () => {
const messages = [
new SystemMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'System' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Message' },
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toBe('System\nMessage');
expect(result[0].getType()).toBe('system');
});
});
describe('Mixed message types', () => {
it('should process all valid message types in mixed array', () => {
const messages = [
new HumanMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Human' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Message' },
],
}),
new AIMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'AI' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Response' },
],
}),
new SystemMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'System' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Prompt' },
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(3);
// All messages should be converted
expect(result[0].content).toBe('Human\nMessage');
expect(result[0].getType()).toBe('human');
expect(result[1].content).toBe('AI\nResponse');
expect(result[1].getType()).toBe('ai');
expect(result[2].content).toBe('System\nPrompt');
expect(result[2].getType()).toBe('system');
});
});
describe('Edge cases', () => {
it('should handle empty array', () => {
const result = formatContentStrings([]);
expect(result).toEqual([]);
});
it('should handle messages with non-array content', () => {
const messages = [
new HumanMessage({
content: 'This is a string content',
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toBe('This is a string content');
});
it('should trim the final concatenated string', () => {
const messages = [
new HumanMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: ' Hello ' },
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: ' World ' },
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(1);
expect(result[0].content).toBe('Hello \n World');
});
});
describe('Real-world scenarios', () => {
it('should handle the exact scenario from the issue', () => {
const messages = [
new HumanMessage({
content: [
{
type: 'text',
text: 'hi there',
},
],
}),
new AIMessage({
content: [
{
type: 'text',
text: 'Hi Danny! How can I help you today?',
},
],
}),
new HumanMessage({
content: [
{
type: 'text',
text: 'what do you see',
},
{
type: 'image_url',
image_url: {
url: '_SOME_BASE64_DATA=',
detail: 'auto',
},
},
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(3);
// First human message (all text) should be converted
expect(result[0].content).toBe('hi there');
expect(result[0].getType()).toBe('human');
// AI message (all text) should now also be converted
expect(result[1].content).toBe('Hi Danny! How can I help you today?');
expect(result[1].getType()).toBe('ai');
// Third message (mixed content) should remain unchanged
expect(result[2].content).toEqual([
{
type: 'text',
text: 'what do you see',
},
{
type: 'image_url',
image_url: {
url: '_SOME_BASE64_DATA=',
detail: 'auto',
},
},
]);
});
it('should handle messages with tool calls', () => {
const messages = [
new HumanMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Please use the calculator' },
{
type: ContentTypes.TOOL_CALL,
tool_call: { name: 'calculator', args: '{"a": 1, "b": 2}' },
},
],
}),
new AIMessage({
content: [
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'I will calculate that for you' },
{
type: ContentTypes.TOOL_CALL,
tool_call: { name: 'calculator', args: '{"a": 1, "b": 2}' },
},
],
}),
];
const result = formatContentStrings(messages);
expect(result).toHaveLength(2);
// Should not convert because not all blocks are text
expect(result[0].content).toEqual([
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'Please use the calculator' },
{
type: ContentTypes.TOOL_CALL,
tool_call: { name: 'calculator', args: '{"a": 1, "b": 2}' },
},
]);
expect(result[1].content).toEqual([
{ type: ContentTypes.TEXT, [ContentTypes.TEXT]: 'I will calculate that for you' },
{
type: ContentTypes.TOOL_CALL,
tool_call: { name: 'calculator', args: '{"a": 1, "b": 2}' },
},
]);
});
});
});

View file

@ -1,57 +0,0 @@
import { ContentTypes } from 'librechat-data-provider';
import type { BaseMessage } from '@langchain/core/messages';
/**
* Formats an array of messages for LangChain, making sure all content fields are strings
* @param {Array<HumanMessage | AIMessage | SystemMessage | ToolMessage>} payload - The array of messages to format.
* @returns {Array<HumanMessage | AIMessage | SystemMessage | ToolMessage>} - The array of formatted LangChain messages, including ToolMessages for tool calls.
*/
export const formatContentStrings = (payload: Array<BaseMessage>): Array<BaseMessage> => {
// Create a new array to store the processed messages
const result: Array<BaseMessage> = [];
for (const message of payload) {
const messageType = message.getType();
const isValidMessage =
messageType === 'human' || messageType === 'ai' || messageType === 'system';
if (!isValidMessage) {
result.push(message);
continue;
}
// If content is already a string, add as-is
if (typeof message.content === 'string') {
result.push(message);
continue;
}
// If content is not an array, add as-is
if (!Array.isArray(message.content)) {
result.push(message);
continue;
}
// Check if all content blocks are text type
const allTextBlocks = message.content.every((block) => block.type === ContentTypes.TEXT);
// Only convert to string if all blocks are text type
if (!allTextBlocks) {
result.push(message);
continue;
}
// Reduce text types to a single string
const content = message.content.reduce((acc, curr) => {
if (curr.type === ContentTypes.TEXT) {
return `${acc}${curr[ContentTypes.TEXT] || ''}\n`;
}
return acc;
}, '');
message.content = content.trim();
result.push(message);
}
return result;
};

View file

@ -1 +0,0 @@
export * from './content';

View file

@ -10,7 +10,6 @@ export * from './mcp/oauth';
export * from './mcp/auth';
export * from './mcp/zod';
/* Utilities */
export * from './format';
export * from './mcp/utils';
export * from './utils';
export * from './db/utils';

View file

@ -31,6 +31,7 @@ export type OpenAIConfiguration = OpenAIClientOptions['configuration'];
export type OAIClientOptions = OpenAIClientOptions & {
include_reasoning?: boolean;
_lc_stream_delay?: number;
};
/**
@ -100,10 +101,3 @@ export interface InitializeOpenAIOptionsParams {
getUserKeyValues: GetUserKeyValuesFunction;
checkUserKeyExpiry: CheckUserKeyExpiryFunction;
}
/**
* Extended LLM config result with stream rate handling
*/
export interface OpenAIOptionsResult extends LLMConfigResult {
streamRate?: number;
}

View file

@ -1615,6 +1615,10 @@ export enum Constants {
* This helps inform the UI if the mcp server was previously added.
* */
mcp_server = 'sys__server__sys',
/**
* Handoff Tool Name Prefix
*/
LC_TRANSFER_TO_ = 'lc_transfer_to_',
/** Placeholder Agent ID for Ephemeral Agents */
EPHEMERAL_AGENT_ID = 'ephemeral',
}

View file

@ -39,7 +39,6 @@ export enum Providers {
GOOGLE = 'google',
VERTEXAI = 'vertexai',
BEDROCK = 'bedrock',
BEDROCK_LEGACY = 'bedrock_legacy',
MISTRALAI = 'mistralai',
MISTRAL = 'mistral',
OLLAMA = 'ollama',
@ -231,6 +230,7 @@ export const defaultAgentFormValues = {
tools: [],
provider: {},
projectIds: [],
edges: [],
artifacts: '',
/** @deprecated Use ACL permissions instead */
isCollaborative: false,

View file

@ -355,3 +355,45 @@ export type AgentToolType = {
} & ({ assistant_id: string; agent_id?: never } | { assistant_id?: never; agent_id?: string });
export type ToolMetadata = TPlugin;
export interface BaseMessage {
content: string;
role?: string;
[key: string]: unknown;
}
export interface BaseGraphState {
[key: string]: unknown;
}
export type GraphEdge = {
/** Agent ID, use a list for multiple sources */
from: string | string[];
/** Agent ID, use a list for multiple destinations */
to: string | string[];
description?: string;
/** Can return boolean or specific destination(s) */
condition?: (state: BaseGraphState) => boolean | string | string[];
/** 'handoff' creates tools for dynamic routing, 'direct' creates direct edges, which also allow parallel execution */
edgeType?: 'handoff' | 'direct';
/**
* For direct edges: Optional prompt to add when transitioning through this edge.
* String prompts can include variables like {results} which will be replaced with
* messages from startIndex onwards. When {results} is used, excludeResults defaults to true.
*
* For handoff edges: Description for the input parameter that the handoff tool accepts,
* allowing the supervisor to pass specific instructions/context to the transferred agent.
*/
prompt?: string | ((messages: BaseMessage[], runStartIndex: number) => string | undefined);
/**
* When true, excludes messages from startIndex when adding prompt.
* Automatically set to true when {results} variable is used in prompt.
*/
excludeResults?: boolean;
/**
* For handoff edges: Customizes the parameter name for the handoff input.
* Defaults to "instructions" if not specified.
* Only applies when prompt is provided for handoff edges.
*/
promptKey?: string;
};

View file

@ -1,7 +1,7 @@
import type { OpenAPIV3 } from 'openapi-types';
import type { AssistantsEndpoint, AgentProvider } from 'src/schemas';
import type { Agents, GraphEdge } from './agents';
import type { ContentTypes } from './runs';
import type { Agents } from './agents';
import type { TFile } from './files';
import { ArtifactModes } from 'src/artifacts';
@ -229,7 +229,9 @@ export type Agent = {
/** @deprecated Use ACL permissions instead */
isCollaborative?: boolean;
tool_resources?: AgentToolResources;
/** @deprecated Use edges instead */
agent_ids?: string[];
edges?: GraphEdge[];
end_after_tools?: boolean;
hide_sequential_outputs?: boolean;
artifacts?: ArtifactModes;
@ -255,6 +257,7 @@ export type AgentCreateParams = {
} & Pick<
Agent,
| 'agent_ids'
| 'edges'
| 'end_after_tools'
| 'hide_sequential_outputs'
| 'artifacts'
@ -280,6 +283,7 @@ export type AgentUpdateParams = {
} & Pick<
Agent,
| 'agent_ids'
| 'edges'
| 'end_after_tools'
| 'hide_sequential_outputs'
| 'artifacts'

View file

@ -68,9 +68,14 @@ const agentSchema = new Schema<IAgent>(
end_after_tools: {
type: Boolean,
},
/** @deprecated Use edges instead */
agent_ids: {
type: [String],
},
edges: {
type: [{ type: Schema.Types.Mixed }],
default: [],
},
isCollaborative: {
type: Boolean,
default: undefined,

View file

@ -1,4 +1,5 @@
import { Document, Types } from 'mongoose';
import type { GraphEdge } from 'librechat-data-provider';
export interface ISupportContact {
name?: string;
@ -27,7 +28,9 @@ export interface IAgent extends Omit<Document, 'model'> {
authorName?: string;
hide_sequential_outputs?: boolean;
end_after_tools?: boolean;
/** @deprecated Use edges instead */
agent_ids?: string[];
edges?: GraphEdge[];
/** @deprecated Use ACL permissions instead */
isCollaborative?: boolean;
conversation_starters?: string[];