refactor: Client Classes & Azure OpenAI as a separate Endpoint (#532)

* refactor: start new client classes, test localAi support

* feat: create base class, extend chatgpt from base

* refactor(BaseClient.js): change userId parameter to user
refactor(BaseClient.js): change userId parameter to user
feat(OpenAIClient.js): add sendMessage method
refactor(OpenAIClient.js): change getConversation method to use user parameter instead of userId
refactor(OpenAIClient.js): change saveMessageToDatabase method to use user parameter instead of userId
refactor(OpenAIClient.js): change buildPrompt method to use messages parameter instead of orderedMessages
feat(index.js): export client classes
refactor(askGPTPlugins.js): use req.body.token or process.env.OPENAI_API_KEY as OpenAI API key
refactor(index.js): comment out askOpenAI route
feat(index.js): add openAI route

feat(openAI.js): add new route for OpenAI API requests with support for progress updates and aborting requests.

* refactor(BaseClient.js): use optional chaining operator to access messageId property
refactor(OpenAIClient.js): use orderedMessages instead of messages to build prompt
refactor(OpenAIClient.js): use optional chaining operator to access messageId property
refactor(fetch-polyfill.js): remove fetch polyfill
refactor(openAI.js): comment out debug option in clientOptions

* refactor: update import statements and remove unused imports in several files
feat: add getAzureCredentials function to azureUtils module
docs: update comments in azureUtils module

* refactor(utils): rename migrateConversations to migrateDataToFirstUser for clarity and consistency

* feat(chatgpt-client.js): add getAzureCredentials function to retrieve Azure credentials
feat(chatgpt-client.js): use getAzureCredentials function to generate reverseProxyUrl
feat(OpenAIClient.js): add isChatCompletion property to determine if chat completion model is used
feat(OpenAIClient.js): add saveOptions parameter to sendMessage and buildPrompt methods
feat(OpenAIClient.js): modify buildPrompt method to handle chat completion model
feat(openAI.js): modify endpointOption to include modelOptions instead of individual options
refactor(OpenAIClient.js): modify getDelta property to use isChatCompletion property instead of isChatGptModel property
refactor(OpenAIClient.js): modify sendMessage method to use saveOptions parameter instead of modelOptions parameter
refactor(OpenAIClient.js): modify buildPrompt method to use saveOptions parameter instead of modelOptions parameter
refactor(OpenAIClient.js): modify ask method to include endpointOption parameter

* chore: delete draft file

* refactor(OpenAIClient.js): extract sendCompletion method from sendMessage method for reusability

* refactor(BaseClient.js): move sendMessage method to BaseClient class
feat(OpenAIClient.js): inherit from BaseClient class and implement necessary methods and properties for OpenAIClient class.

* refactor(BaseClient.js): rename getBuildPromptOptions to getBuildMessagesOptions
feat(BaseClient.js): add buildMessages method to BaseClient class
fix(ChatGPTClient.js): use message.text instead of message.message
refactor(ChatGPTClient.js): rename buildPromptBody to buildMessagesBody
refactor(ChatGPTClient.js): remove console.debug statement and add debug log for prompt variable

refactor(OpenAIClient.js): move setOptions method to the bottom of the class
feat(OpenAIClient.js): add support for cl100k_base encoding
feat(OpenAIClient.js): add support for unofficial chat GPT models
feat(OpenAIClient.js): add support for custom modelOptions
feat(OpenAIClient.js): add caching for tokenizers
feat(OpenAIClient.js): add freeAndInitializeEncoder method to free and reinitialize tokenizers
refactor(OpenAIClient.js): rename getBuildPromptOptions to getBuildMessagesOptions
refactor(OpenAIClient.js): rename buildPrompt to buildMessages
refactor(OpenAIClient.js): remove endpointOption from ask function arguments in openAI.js

* refactor(ChatGPTClient.js, OpenAIClient.js): improve code readability and consistency

- In ChatGPTClient.js, update the roleLabel and messageString variables to handle cases where the message object does not have an isCreatedByUser property or a role property with a value of 'user'.
- In OpenAIClient.js, rename the freeAndInitializeEncoder method to freeAndResetEncoder to better reflect its functionality. Also, update the method calls to reflect the new name. Additionally, update the getTokenCount method to handle errors by calling the freeAndResetEncoder method instead of the now-renamed freeAndInitializeEncoder method.

* refactor(OpenAIClient.js): extract instructions object to a separate variable and add it to payload after formatted messages
fix(OpenAIClient.js): handle cases where progressMessage.choices is undefined or empty

* refactor(BaseClient.js): extract addInstructions method from sendMessage method
feat(OpenAIClient.js): add maxTokensMap object to map maximum tokens for each model
refactor(OpenAIClient.js): use addInstructions method in buildMessages method instead of manually building the payload list

* refactor(OpenAIClient.js): remove unnecessary condition for modelOptions.model property in buildMessages method

* feat(BaseClient.js): add support for token count tracking and context strategy
feat(OpenAIClient.js): add support for token count tracking and context strategy
feat(Message.js): add tokenCount field to Message schema and updateMessage function

* refactor(BaseClient.js): add support for refining messages based on token limit
feat(OpenAIClient.js): add support for context refinement strategy
refactor(OpenAIClient.js): use context refinement strategy in message sending
refactor(server/index.js): improve code readability by breaking long lines

* refactor(BaseClient.js): change `remainingContext` to `remainingContextTokens` for clarity
feat(BaseClient.js): add `refinePrompt` and `refinePromptTemplate` to handle message refinement
feat(BaseClient.js): add `refineMessages` method to refine messages
feat(BaseClient.js): add `handleContextStrategy` method to handle context strategy
feat(OpenAIClient.js): add `abortController` to `buildPrompt` method options
refactor(OpenAIClient.js): change `payload` and `tokenCountMap` to let variables in `handleContextStrategy` method
refactor(BaseClient.js): change `remainingContext` to `remainingContextTokens` in `handleContextStrategy` method for consistency
refactor(BaseClient.js): change `remainingContext` to `remainingContextTokens` in `getMessagesWithinTokenLimit` method for consistency
refactor(BaseClient.js): change `remainingContext` to `remainingContext

* chore(openAI.js): comment out contextStrategy option in clientOptions

* chore(openAI.js): comment out debug option in clientOptions object

* test: BaseClient tests in progress

* test: Complete OpenAIClient & BaseClient tests

* fix(OpenAIClient.js): remove unnecessary whitespace
fix(OpenAIClient.js): remove unused variables and comments
fix(OpenAIClient.test.js): combine getTokenCount and freeAndResetEncoder tests

* chore(.eslintrc.js): add rule for maximum of 1 empty line
feat(ask/openAI.js): add abortMessage utility function
fix(ask/openAI.js): handle error and abort message if partial text is less than 2 characters
feat(utils/index.js): export abortMessage utility function

* test: complete additional tests

* feat: Azure OpenAI as a separate endpoint

* chore: remove extraneous console logs

* fix(azureOpenAI): use chatCompletion endpoint

* chore(initializeClient.js): delete initializeClient.js file

chore(askOpenAI.js): delete old OpenAI route handler

chore(handlers.js): remove trailing whitespace in thought variable assignment

* chore(chatgpt-client.js): remove unused chatgpt-client.js file
refactor(index.js): remove askClient import and export from index.js

* chore(chatgpt-client.tokens.js): update test script for memory usage and encoding performance

The test script in `chatgpt-client.tokens.js` has been updated to measure the memory usage and encoding performance of the client. The script now includes information about the initial memory usage, peak memory usage, final memory usage, and memory usage after a timeout. It also provides insights into the number of encoding requests that can be processed per second.

The script has been modified to use the `OpenAIClient` class instead of the `ChatGPTClient` class. Additionally, the number of iterations for the encoding loop has been reduced to 10,000.

A timeout function has been added to simulate a delay of 15 seconds. After the timeout, the memory usage is measured again.

The script now handles uncaught exceptions and logs any errors that occur, except for errors related to failed fetch requests.

Note: This is a test script and should not be used in production

* feat(FakeClient.js): add a new class `FakeClient` that extends `BaseClient` and implements methods for a fake client
feat(FakeClient.js): implement the `setOptions` method to handle options for the fake client
feat(FakeClient.js): implement the `initializeFakeClient` function to initialize a fake client with options and fake messages
fix(OpenAIClient.js): remove duplicate `maxTokensMap` import and use the one from utils
feat(BaseClient): return promptTokens and completionTokens

* refactor(gptPlugins): refactor ChatAgent to PluginsClient, which extends OpenAIClient

* refactor: client paths

* chore(jest.config.js): remove jest.config.js file

* fix(PluginController.js): update file path to manifest.json
feat(gptPlugins.js): add support for aborting messages

refactor(ask/index.js): rename askGPTPlugins to gptPlugins for consistency

* fix(BaseClient.js): fix spacing in generateTextStream function signature
refactor(BaseClient.js): remove unnecessary push to currentMessages in generateUserMessage function
refactor(BaseClient.js): remove unnecessary push to currentMessages in handleStartMethods function
refactor(PluginsClient.js): remove unused variables and date formatting in constructor
refactor(PluginsClient.js): simplify mapping of pastMessages in getCompletionPayload function

* refactor(GoogleClient): GoogleClient now extends BaseClient

* chore(.env.example): add AZURE_OPENAI_MODELS variable
fix(api/routes/ask/gptPlugins.js): enable Azure integration if PLUGINS_USE_AZURE is true
fix(api/routes/endpoints.js): getOpenAIModels function now accepts options, use AZURE_OPENAI_MODELS if PLUGINS_USE_AZURE is true
fix(client/components/Endpoints/OpenAI/Settings.jsx): remove console.log statement
docs(features/azure.md): add documentation for Azure OpenAI integration and environment variables

* fix(e2e:popup): includes the icon + endpoint names in role, name property
This commit is contained in:
Danny Avila 2023-07-03 16:51:12 -04:00 committed by GitHub
parent 10c772c9f2
commit 8819e83d2c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
88 changed files with 4257 additions and 10198 deletions

View file

@ -0,0 +1,536 @@
const crypto = require('crypto');
const TextStream = require('./TextStream');
const { RecursiveCharacterTextSplitter } = require('langchain/text_splitter');
const { ChatOpenAI } = require('langchain/chat_models/openai');
const { loadSummarizationChain } = require('langchain/chains');
const { refinePrompt } = require('./prompts/refinePrompt');
const { getConvo, getMessages, saveMessage, updateMessage, saveConvo } = require('../../models');
class BaseClient {
constructor(apiKey, options = {}) {
this.apiKey = apiKey;
this.sender = options.sender || 'AI';
this.contextStrategy = null;
this.currentDateString = new Date().toLocaleDateString('en-us', {
year: 'numeric',
month: 'long',
day: 'numeric'
});
}
setOptions() {
throw new Error("Method 'setOptions' must be implemented.");
}
getCompletion() {
throw new Error("Method 'getCompletion' must be implemented.");
}
getSaveOptions() {
throw new Error('Subclasses must implement getSaveOptions');
}
async buildMessages() {
throw new Error('Subclasses must implement buildMessages');
}
getBuildMessagesOptions() {
throw new Error('Subclasses must implement getBuildMessagesOptions');
}
async generateTextStream(text, onProgress, options = {}) {
const stream = new TextStream(text, options);
await stream.processTextStream(onProgress);
}
async setMessageOptions(opts = {}) {
if (opts && typeof opts === 'object') {
this.setOptions(opts);
}
const user = opts.user || null;
const conversationId = opts.conversationId || crypto.randomUUID();
const parentMessageId = opts.parentMessageId || '00000000-0000-0000-0000-000000000000';
const userMessageId = opts.overrideParentMessageId || crypto.randomUUID();
const responseMessageId = crypto.randomUUID();
const saveOptions = this.getSaveOptions();
this.abortController = opts.abortController || new AbortController();
this.currentMessages = await this.loadHistory(conversationId, parentMessageId) ?? [];
return {
...opts,
user,
conversationId,
parentMessageId,
userMessageId,
responseMessageId,
saveOptions,
};
}
createUserMessage({ messageId, parentMessageId, conversationId, text}) {
const userMessage = {
messageId,
parentMessageId,
conversationId,
sender: 'User',
text,
isCreatedByUser: true
};
return userMessage;
}
async handleStartMethods(message, opts) {
const {
user,
conversationId,
parentMessageId,
userMessageId,
responseMessageId,
saveOptions,
} = await this.setMessageOptions(opts);
const userMessage = this.createUserMessage({
messageId: userMessageId,
parentMessageId,
conversationId,
text: message,
});
if (typeof opts?.getIds === 'function') {
opts.getIds({
userMessage,
conversationId,
responseMessageId
});
}
if (typeof opts?.onStart === 'function') {
opts.onStart(userMessage);
}
if (this.options.debug) {
console.debug('options');
console.debug(this.options);
}
return {
...opts,
user,
conversationId,
responseMessageId,
saveOptions,
userMessage,
};
}
addInstructions(messages, instructions) {
const payload = [];
if (!instructions) {
return messages;
}
if (messages.length > 1) {
payload.push(...messages.slice(0, -1));
}
payload.push(instructions);
if (messages.length > 0) {
payload.push(messages[messages.length - 1]);
}
return payload;
}
async handleTokenCountMap(tokenCountMap) {
if (this.currentMessages.length === 0) {
return;
}
for (let i = 0; i < this.currentMessages.length; i++) {
// Skip the last message, which is the user message.
if (i === this.currentMessages.length - 1) {
break;
}
const message = this.currentMessages[i];
const { messageId } = message;
const update = {};
if (messageId === tokenCountMap.refined?.messageId) {
if (this.options.debug) {
console.debug(`Adding refined props to ${messageId}.`);
}
update.refinedMessageText = tokenCountMap.refined.content;
update.refinedTokenCount = tokenCountMap.refined.tokenCount;
}
if (message.tokenCount && !update.refinedTokenCount) {
if (this.options.debug) {
console.debug(`Skipping ${messageId}: already had a token count.`);
}
continue;
}
const tokenCount = tokenCountMap[messageId];
if (tokenCount) {
message.tokenCount = tokenCount;
update.tokenCount = tokenCount;
await this.updateMessageInDatabase({ messageId, ...update });
}
}
}
concatenateMessages(messages) {
return messages.reduce((acc, message) => {
const nameOrRole = message.name ?? message.role;
return acc + `${nameOrRole}:\n${message.content}\n\n`;
}, '');
}
async refineMessages(messagesToRefine, remainingContextTokens) {
const model = new ChatOpenAI({ temperature: 0 });
const chain = loadSummarizationChain(model, { type: 'refine', verbose: this.options.debug, refinePrompt });
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 1500,
chunkOverlap: 100,
});
const userMessages = this.concatenateMessages(messagesToRefine.filter(m => m.role === 'user'));
const assistantMessages = this.concatenateMessages(messagesToRefine.filter(m => m.role !== 'user'));
const userDocs = await splitter.createDocuments([userMessages],[],{
chunkHeader: `DOCUMENT NAME: User Message\n\n---\n\n`,
appendChunkOverlapHeader: true,
});
const assistantDocs = await splitter.createDocuments([assistantMessages],[],{
chunkHeader: `DOCUMENT NAME: Assistant Message\n\n---\n\n`,
appendChunkOverlapHeader: true,
});
// const chunkSize = Math.round(concatenatedMessages.length / 512);
const input_documents = userDocs.concat(assistantDocs);
if (this.options.debug ) {
console.debug(`Refining messages...`);
}
try {
const res = await chain.call({
input_documents,
signal: this.abortController.signal,
});
const refinedMessage = {
role: 'assistant',
content: res.output_text,
tokenCount: this.getTokenCount(res.output_text),
}
if (this.options.debug ) {
console.debug('Refined messages', refinedMessage);
console.debug(`remainingContextTokens: ${remainingContextTokens}, after refining: ${remainingContextTokens - refinedMessage.tokenCount}`);
}
return refinedMessage;
} catch (e) {
console.error('Error refining messages');
console.error(e);
return null;
}
}
/**
* This method processes an array of messages and returns a context of messages that fit within a token limit.
* It iterates over the messages from newest to oldest, adding them to the context until the token limit is reached.
* If the token limit would be exceeded by adding a message, that message and possibly the previous one are added to a separate array of messages to refine.
* The method uses `push` and `pop` operations for efficient array manipulation, and reverses the arrays at the end to maintain the original order of the messages.
* The method also includes a mechanism to avoid blocking the event loop by waiting for the next tick after each iteration.
*
* @param {Array} messages - An array of messages, each with a `tokenCount` property. The messages should be ordered from oldest to newest.
* @returns {Object} An object with three properties: `context`, `remainingContextTokens`, and `messagesToRefine`. `context` is an array of messages that fit within the token limit. `remainingContextTokens` is the number of tokens remaining within the limit after adding the messages to the context. `messagesToRefine` is an array of messages that were not added to the context because they would have exceeded the token limit.
*/
async getMessagesWithinTokenLimit(messages) {
let currentTokenCount = 0;
let context = [];
let messagesToRefine = [];
let refineIndex = -1;
let remainingContextTokens = this.maxContextTokens;
for (let i = messages.length - 1; i >= 0; i--) {
const message = messages[i];
const newTokenCount = currentTokenCount + message.tokenCount;
const exceededLimit = newTokenCount > this.maxContextTokens;
let shouldRefine = exceededLimit && this.shouldRefineContext;
let refineNextMessage = i !== 0 && i !== 1 && context.length > 0;
if (shouldRefine) {
messagesToRefine.push(message);
if (refineIndex === -1) {
refineIndex = i;
}
if (refineNextMessage) {
refineIndex = i + 1;
const removedMessage = context.pop();
messagesToRefine.push(removedMessage);
currentTokenCount -= removedMessage.tokenCount;
remainingContextTokens = this.maxContextTokens - currentTokenCount;
refineNextMessage = false;
}
continue;
} else if (exceededLimit) {
break;
}
context.push(message);
currentTokenCount = newTokenCount;
remainingContextTokens = this.maxContextTokens - currentTokenCount;
await new Promise(resolve => setImmediate(resolve));
}
return { context: context.reverse(), remainingContextTokens, messagesToRefine: messagesToRefine.reverse(), refineIndex };
}
async handleContextStrategy({instructions, orderedMessages, formattedMessages}) {
let payload = this.addInstructions(formattedMessages, instructions);
let orderedWithInstructions = this.addInstructions(orderedMessages, instructions);
let { context, remainingContextTokens, messagesToRefine, refineIndex } = await this.getMessagesWithinTokenLimit(payload);
payload = context;
let refinedMessage;
// if (messagesToRefine.length > 0) {
// refinedMessage = await this.refineMessages(messagesToRefine, remainingContextTokens);
// payload.unshift(refinedMessage);
// remainingContextTokens -= refinedMessage.tokenCount;
// }
// if (remainingContextTokens <= instructions?.tokenCount) {
// if (this.options.debug) {
// console.debug(`Remaining context (${remainingContextTokens}) is less than instructions token count: ${instructions.tokenCount}`);
// }
// ({ context, remainingContextTokens, messagesToRefine, refineIndex } = await this.getMessagesWithinTokenLimit(payload));
// payload = context;
// }
// Calculate the difference in length to determine how many messages were discarded if any
let diff = orderedWithInstructions.length - payload.length;
if (this.options.debug) {
console.debug('<---------------------------------DIFF--------------------------------->');
console.debug(`Difference between payload (${payload.length}) and orderedWithInstructions (${orderedWithInstructions.length}): ${diff}`);
console.debug('remainingContextTokens, this.maxContextTokens (1/2)', remainingContextTokens, this.maxContextTokens);
}
// If the difference is positive, slice the orderedWithInstructions array
if (diff > 0) {
orderedWithInstructions = orderedWithInstructions.slice(diff);
}
if (messagesToRefine.length > 0) {
refinedMessage = await this.refineMessages(messagesToRefine, remainingContextTokens);
payload.unshift(refinedMessage);
remainingContextTokens -= refinedMessage.tokenCount;
}
if (this.options.debug) {
console.debug('remainingContextTokens, this.maxContextTokens (2/2)', remainingContextTokens, this.maxContextTokens);
}
let tokenCountMap = orderedWithInstructions.reduce((map, message, index) => {
if (!message.messageId) {
return map;
}
if (index === refineIndex) {
map.refined = { ...refinedMessage, messageId: message.messageId};
}
map[message.messageId] = payload[index].tokenCount;
return map;
}, {});
const promptTokens = this.maxContextTokens - remainingContextTokens;
if (this.options.debug) {
console.debug('<-------------------------PAYLOAD/TOKEN COUNT MAP------------------------->');
console.debug('Payload:', payload);
console.debug('Token Count Map:', tokenCountMap);
console.debug('Prompt Tokens', promptTokens, remainingContextTokens, this.maxContextTokens);
}
return { payload, tokenCountMap, promptTokens, messages: orderedWithInstructions };
}
async sendMessage(message, opts = {}) {
console.log('BaseClient: sendMessage', message, opts);
const {
user,
conversationId,
responseMessageId,
saveOptions,
userMessage,
} = await this.handleStartMethods(message, opts);
// It's not necessary to push to currentMessages
// depending on subclass implementation of handling messages
this.currentMessages.push(userMessage);
let { prompt: payload, tokenCountMap, promptTokens } = await this.buildMessages(
this.currentMessages,
userMessage.messageId,
this.getBuildMessagesOptions(opts),
);
if (this.options.debug) {
console.debug('payload');
console.debug(payload);
}
if (tokenCountMap) {
payload = payload.map((message, i) => {
const { tokenCount, ...messageWithoutTokenCount } = message;
// userMessage is always the last one in the payload
if (i === payload.length - 1) {
userMessage.tokenCount = message.tokenCount;
console.debug(`Token count for user message: ${tokenCount}`, `Instruction Tokens: ${tokenCountMap.instructions || 'N/A'}`);
}
return messageWithoutTokenCount;
});
this.handleTokenCountMap(tokenCountMap);
}
await this.saveMessageToDatabase(userMessage, saveOptions, user);
const responseMessage = {
messageId: responseMessageId,
conversationId,
parentMessageId: userMessage.messageId,
isCreatedByUser: false,
model: this.modelOptions.model,
sender: this.sender,
text: await this.sendCompletion(payload, opts),
promptTokens,
};
if (tokenCountMap && this.getTokenCountForResponse) {
responseMessage.tokenCount = this.getTokenCountForResponse(responseMessage);
responseMessage.completionTokens = responseMessage.tokenCount;
}
await this.saveMessageToDatabase(responseMessage, saveOptions, user);
delete responseMessage.tokenCount;
return responseMessage;
}
async getConversation(conversationId, user = null) {
return await getConvo(user, conversationId);
}
async loadHistory(conversationId, parentMessageId = null) {
if (this.options.debug) {
console.debug('Loading history for conversation', conversationId, parentMessageId);
}
const messages = (await getMessages({ conversationId })) || [];
if (messages.length === 0) {
return [];
}
let mapMethod = null;
if (this.getMessageMapMethod) {
mapMethod = this.getMessageMapMethod();
}
return this.constructor.getMessagesForConversation(messages, parentMessageId, mapMethod);
}
async saveMessageToDatabase(message, endpointOptions, user = null) {
await saveMessage({ ...message, unfinished: false });
await saveConvo(user, {
conversationId: message.conversationId,
endpoint: this.options.endpoint,
...endpointOptions
});
}
async updateMessageInDatabase(message) {
await updateMessage(message);
}
/**
* Iterate through messages, building an array based on the parentMessageId.
* Each message has an id and a parentMessageId. The parentMessageId is the id of the message that this message is a reply to.
* @param messages
* @param parentMessageId
* @returns {*[]} An array containing the messages in the order they should be displayed, starting with the root message.
*/
static getMessagesForConversation(messages, parentMessageId, mapMethod = null) {
if (!messages || messages.length === 0) {
return [];
}
const orderedMessages = [];
let currentMessageId = parentMessageId;
while (currentMessageId) {
const message = messages.find(msg => {
const messageId = msg.messageId ?? msg.id;
return messageId === currentMessageId;
});
if (!message) {
break;
}
orderedMessages.unshift(message);
currentMessageId = message.parentMessageId;
}
if (mapMethod) {
return orderedMessages.map(mapMethod);
}
return orderedMessages;
}
/**
* Algorithm adapted from "6. Counting tokens for chat API calls" of
* https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
*
* An additional 2 tokens need to be added for metadata after all messages have been counted.
*
* @param {*} message
*/
getTokenCountForMessage(message) {
let tokensPerMessage;
let nameAdjustment;
if (this.modelOptions.model.startsWith('gpt-4')) {
tokensPerMessage = 3;
nameAdjustment = 1;
} else {
tokensPerMessage = 4;
nameAdjustment = -1;
}
if (this.options.debug) {
console.debug('getTokenCountForMessage', message);
}
// Map each property of the message to the number of tokens it contains
const propertyTokenCounts = Object.entries(message).map(([key, value]) => {
if (key === 'tokenCount' || typeof value !== 'string') {
return 0;
}
// Count the number of tokens in the property value
const numTokens = this.getTokenCount(value);
// Adjust by `nameAdjustment` tokens if the property key is 'name'
const adjustment = (key === 'name') ? nameAdjustment : 0;
return numTokens + adjustment;
});
if (this.options.debug) {
console.debug('propertyTokenCounts', propertyTokenCounts);
}
// Sum the number of tokens in all properties and add `tokensPerMessage` for metadata
return propertyTokenCounts.reduce((a, b) => a + b, tokensPerMessage);
}
}
module.exports = BaseClient;

View file

@ -0,0 +1,570 @@
const crypto = require('crypto');
const Keyv = require('keyv');
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('@dqbd/tiktoken');
const { fetchEventSource } = require('@waylaidwanderer/fetch-event-source');
const { Agent, ProxyAgent } = require('undici');
const BaseClient = require('./BaseClient');
const CHATGPT_MODEL = 'gpt-3.5-turbo';
const tokenizersCache = {};
class ChatGPTClient extends BaseClient {
constructor(
apiKey,
options = {},
cacheOptions = {},
) {
super(apiKey, options, cacheOptions);
cacheOptions.namespace = cacheOptions.namespace || 'chatgpt';
this.conversationsCache = new Keyv(cacheOptions);
this.setOptions(options);
}
setOptions(options) {
if (this.options && !this.options.replaceOptions) {
// nested options aren't spread properly, so we need to do this manually
this.options.modelOptions = {
...this.options.modelOptions,
...options.modelOptions,
};
delete options.modelOptions;
// now we can merge options
this.options = {
...this.options,
...options,
};
} else {
this.options = options;
}
if (this.options.openaiApiKey) {
this.apiKey = this.options.openaiApiKey;
}
const modelOptions = this.options.modelOptions || {};
this.modelOptions = {
...modelOptions,
// set some good defaults (check for undefined in some cases because they may be 0)
model: modelOptions.model || CHATGPT_MODEL,
temperature: typeof modelOptions.temperature === 'undefined' ? 0.8 : modelOptions.temperature,
top_p: typeof modelOptions.top_p === 'undefined' ? 1 : modelOptions.top_p,
presence_penalty: typeof modelOptions.presence_penalty === 'undefined' ? 1 : modelOptions.presence_penalty,
stop: modelOptions.stop,
};
this.isChatGptModel = this.modelOptions.model.startsWith('gpt-');
const { isChatGptModel } = this;
this.isUnofficialChatGptModel = this.modelOptions.model.startsWith('text-chat') || this.modelOptions.model.startsWith('text-davinci-002-render');
const { isUnofficialChatGptModel } = this;
// Davinci models have a max context length of 4097 tokens.
this.maxContextTokens = this.options.maxContextTokens || (isChatGptModel ? 4095 : 4097);
// I decided to reserve 1024 tokens for the response.
// The max prompt tokens is determined by the max context tokens minus the max response tokens.
// Earlier messages will be dropped until the prompt is within the limit.
this.maxResponseTokens = this.modelOptions.max_tokens || 1024;
this.maxPromptTokens = this.options.maxPromptTokens || (this.maxContextTokens - this.maxResponseTokens);
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
throw new Error(`maxPromptTokens + max_tokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${this.maxPromptTokens + this.maxResponseTokens}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`);
}
this.userLabel = this.options.userLabel || 'User';
this.chatGptLabel = this.options.chatGptLabel || 'ChatGPT';
if (isChatGptModel) {
// Use these faux tokens to help the AI understand the context since we are building the chat log ourselves.
// Trying to use "<|im_start|>" causes the AI to still generate "<" or "<|" at the end sometimes for some reason,
// without tripping the stop sequences, so I'm using "||>" instead.
this.startToken = '||>';
this.endToken = '';
this.gptEncoder = this.constructor.getTokenizer('cl100k_base');
} else if (isUnofficialChatGptModel) {
this.startToken = '<|im_start|>';
this.endToken = '<|im_end|>';
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true, {
'<|im_start|>': 100264,
'<|im_end|>': 100265,
});
} else {
// Previously I was trying to use "<|endoftext|>" but there seems to be some bug with OpenAI's token counting
// system that causes only the first "<|endoftext|>" to be counted as 1 token, and the rest are not treated
// as a single token. So we're using this instead.
this.startToken = '||>';
this.endToken = '';
try {
this.gptEncoder = this.constructor.getTokenizer(this.modelOptions.model, true);
} catch {
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true);
}
}
if (!this.modelOptions.stop) {
const stopTokens = [this.startToken];
if (this.endToken && this.endToken !== this.startToken) {
stopTokens.push(this.endToken);
}
stopTokens.push(`\n${this.userLabel}:`);
stopTokens.push('<|diff_marker|>');
// I chose not to do one for `chatGptLabel` because I've never seen it happen
this.modelOptions.stop = stopTokens;
}
if (this.options.reverseProxyUrl) {
this.completionsUrl = this.options.reverseProxyUrl;
} else if (isChatGptModel) {
this.completionsUrl = 'https://api.openai.com/v1/chat/completions';
} else {
this.completionsUrl = 'https://api.openai.com/v1/completions';
}
return this;
}
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
if (tokenizersCache[encoding]) {
return tokenizersCache[encoding];
}
let tokenizer;
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
return tokenizer;
}
async getCompletion(input, onProgress, abortController = null) {
if (!abortController) {
abortController = new AbortController();
}
const modelOptions = { ...this.modelOptions };
if (typeof onProgress === 'function') {
modelOptions.stream = true;
}
if (this.isChatGptModel) {
modelOptions.messages = input;
} else {
modelOptions.prompt = input;
}
const { debug } = this.options;
const url = this.completionsUrl;
if (debug) {
console.debug();
console.debug(url);
console.debug(modelOptions);
console.debug();
}
const opts = {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(modelOptions),
dispatcher: new Agent({
bodyTimeout: 0,
headersTimeout: 0,
}),
};
if (this.apiKey && this.options.azure) {
opts.headers['api-key'] = this.apiKey;
} else if (this.apiKey) {
opts.headers.Authorization = `Bearer ${this.apiKey}`;
}
if (this.options.headers) {
opts.headers = { ...opts.headers, ...this.options.headers };
}
if (this.options.proxy) {
opts.dispatcher = new ProxyAgent(this.options.proxy);
}
if (modelOptions.stream) {
// eslint-disable-next-line no-async-promise-executor
return new Promise(async (resolve, reject) => {
try {
let done = false;
await fetchEventSource(url, {
...opts,
signal: abortController.signal,
async onopen(response) {
if (response.status === 200) {
return;
}
if (debug) {
console.debug(response);
}
let error;
try {
const body = await response.text();
error = new Error(`Failed to send message. HTTP ${response.status} - ${body}`);
error.status = response.status;
error.json = JSON.parse(body);
} catch {
error = error || new Error(`Failed to send message. HTTP ${response.status}`);
}
throw error;
},
onclose() {
if (debug) {
console.debug('Server closed the connection unexpectedly, returning...');
}
// workaround for private API not sending [DONE] event
if (!done) {
onProgress('[DONE]');
abortController.abort();
resolve();
}
},
onerror(err) {
if (debug) {
console.debug(err);
}
// rethrow to stop the operation
throw err;
},
onmessage(message) {
if (debug) {
// console.debug(message);
}
if (!message.data || message.event === 'ping') {
return;
}
if (message.data === '[DONE]') {
onProgress('[DONE]');
abortController.abort();
resolve();
done = true;
return;
}
onProgress(JSON.parse(message.data));
},
});
} catch (err) {
reject(err);
}
});
}
const response = await fetch(
url,
{
...opts,
signal: abortController.signal,
},
);
if (response.status !== 200) {
const body = await response.text();
const error = new Error(`Failed to send message. HTTP ${response.status} - ${body}`);
error.status = response.status;
try {
error.json = JSON.parse(body);
} catch {
error.body = body;
}
throw error;
}
return response.json();
}
async generateTitle(userMessage, botMessage) {
const instructionsPayload = {
role: 'system',
content: `Write an extremely concise subtitle for this conversation with no more than a few words. All words should be capitalized. Exclude punctuation.
||>Message:
${userMessage.message}
||>Response:
${botMessage.message}
||>Title:`,
};
const titleGenClientOptions = JSON.parse(JSON.stringify(this.options));
titleGenClientOptions.modelOptions = {
model: 'gpt-3.5-turbo',
temperature: 0,
presence_penalty: 0,
frequency_penalty: 0,
};
const titleGenClient = new ChatGPTClient(this.apiKey, titleGenClientOptions);
const result = await titleGenClient.getCompletion([instructionsPayload], null);
// remove any non-alphanumeric characters, replace multiple spaces with 1, and then trim
return result.choices[0].message.content
.replace(/[^a-zA-Z0-9' ]/g, '')
.replace(/\s+/g, ' ')
.trim();
}
async sendMessage(
message,
opts = {},
) {
if (opts.clientOptions && typeof opts.clientOptions === 'object') {
this.setOptions(opts.clientOptions);
}
const conversationId = opts.conversationId || crypto.randomUUID();
const parentMessageId = opts.parentMessageId || crypto.randomUUID();
let conversation = typeof opts.conversation === 'object'
? opts.conversation
: await this.conversationsCache.get(conversationId);
let isNewConversation = false;
if (!conversation) {
conversation = {
messages: [],
createdAt: Date.now(),
};
isNewConversation = true;
}
const shouldGenerateTitle = opts.shouldGenerateTitle && isNewConversation;
const userMessage = {
id: crypto.randomUUID(),
parentMessageId,
role: 'User',
message,
};
conversation.messages.push(userMessage);
// Doing it this way instead of having each message be a separate element in the array seems to be more reliable,
// especially when it comes to keeping the AI in character. It also seems to improve coherency and context retention.
const { prompt: payload, context } = await this.buildPrompt(
conversation.messages,
userMessage.id,
{
isChatGptModel: this.isChatGptModel,
promptPrefix: opts.promptPrefix,
},
);
if (this.options.keepNecessaryMessagesOnly) {
conversation.messages = context;
}
let reply = '';
let result = null;
if (typeof opts.onProgress === 'function') {
await this.getCompletion(
payload,
(progressMessage) => {
if (progressMessage === '[DONE]') {
return;
}
const token = this.isChatGptModel ? progressMessage.choices[0].delta.content : progressMessage.choices[0].text;
// first event's delta content is always undefined
if (!token) {
return;
}
if (this.options.debug) {
console.debug(token);
}
if (token === this.endToken) {
return;
}
opts.onProgress(token);
reply += token;
},
opts.abortController || new AbortController(),
);
} else {
result = await this.getCompletion(
payload,
null,
opts.abortController || new AbortController(),
);
if (this.options.debug) {
console.debug(JSON.stringify(result));
}
if (this.isChatGptModel) {
reply = result.choices[0].message.content;
} else {
reply = result.choices[0].text.replace(this.endToken, '');
}
}
// avoids some rendering issues when using the CLI app
if (this.options.debug) {
console.debug();
}
reply = reply.trim();
const replyMessage = {
id: crypto.randomUUID(),
parentMessageId: userMessage.id,
role: 'ChatGPT',
message: reply,
};
conversation.messages.push(replyMessage);
const returnData = {
response: replyMessage.message,
conversationId,
parentMessageId: replyMessage.parentMessageId,
messageId: replyMessage.id,
details: result || {},
};
if (shouldGenerateTitle) {
conversation.title = await this.generateTitle(userMessage, replyMessage);
returnData.title = conversation.title;
}
await this.conversationsCache.set(conversationId, conversation);
if (this.options.returnConversation) {
returnData.conversation = conversation;
}
return returnData;
}
async buildPrompt(messages, parentMessageId, { isChatGptModel = false, promptPrefix = null }) {
const orderedMessages = this.constructor.getMessagesForConversation(messages, parentMessageId);
promptPrefix = (promptPrefix || this.options.promptPrefix || '').trim();
if (promptPrefix) {
// If the prompt prefix doesn't end with the end token, add it.
if (!promptPrefix.endsWith(`${this.endToken}`)) {
promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n`;
}
promptPrefix = `${this.startToken}Instructions:\n${promptPrefix}`;
} else {
const currentDateString = new Date().toLocaleDateString(
'en-us',
{ year: 'numeric', month: 'long', day: 'numeric' },
);
promptPrefix = `${this.startToken}Instructions:\nYou are ChatGPT, a large language model trained by OpenAI. Respond conversationally.\nCurrent date: ${currentDateString}${this.endToken}\n\n`;
}
const promptSuffix = `${this.startToken}${this.chatGptLabel}:\n`; // Prompt ChatGPT to respond.
const instructionsPayload = {
role: 'system',
name: 'instructions',
content: promptPrefix,
};
const messagePayload = {
role: 'system',
content: promptSuffix,
};
let currentTokenCount;
if (isChatGptModel) {
currentTokenCount = this.getTokenCountForMessage(instructionsPayload) + this.getTokenCountForMessage(messagePayload);
} else {
currentTokenCount = this.getTokenCount(`${promptPrefix}${promptSuffix}`);
}
let promptBody = '';
const maxTokenCount = this.maxPromptTokens;
const context = [];
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
// Do this within a recursive async function so that it doesn't block the event loop for too long.
const buildPromptBody = async () => {
if (currentTokenCount < maxTokenCount && orderedMessages.length > 0) {
const message = orderedMessages.pop();
const roleLabel = message?.isCreatedByUser || message?.role?.toLowerCase() === 'user' ? this.userLabel : this.chatGptLabel;
const messageString = `${this.startToken}${roleLabel}:\n${message?.text ?? message?.message}${this.endToken}\n`;
let newPromptBody;
if (promptBody || isChatGptModel) {
newPromptBody = `${messageString}${promptBody}`;
} else {
// Always insert prompt prefix before the last user message, if not gpt-3.5-turbo.
// This makes the AI obey the prompt instructions better, which is important for custom instructions.
// After a bunch of testing, it doesn't seem to cause the AI any confusion, even if you ask it things
// like "what's the last thing I wrote?".
newPromptBody = `${promptPrefix}${messageString}${promptBody}`;
}
context.unshift(message);
const tokenCountForMessage = this.getTokenCount(messageString);
const newTokenCount = currentTokenCount + tokenCountForMessage;
if (newTokenCount > maxTokenCount) {
if (promptBody) {
// This message would put us over the token limit, so don't add it.
return false;
}
// This is the first message, so we can't add it. Just throw an error.
throw new Error(`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`);
}
promptBody = newPromptBody;
currentTokenCount = newTokenCount;
// wait for next tick to avoid blocking the event loop
await new Promise(resolve => setImmediate(resolve));
return buildPromptBody();
}
return true;
};
await buildPromptBody();
const prompt = `${promptBody}${promptSuffix}`;
if (isChatGptModel) {
messagePayload.content = prompt;
// Add 2 tokens for metadata after all messages have been counted.
currentTokenCount += 2;
}
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
this.modelOptions.max_tokens = Math.min(this.maxContextTokens - currentTokenCount, this.maxResponseTokens);
if (this.options.debug) {
console.debug(`Prompt : ${prompt}`);
}
if (isChatGptModel) {
return { prompt: [instructionsPayload, messagePayload], context };
}
return { prompt, context };
}
getTokenCount(text) {
return this.gptEncoder.encode(text, 'all').length;
}
/**
* Algorithm adapted from "6. Counting tokens for chat API calls" of
* https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
*
* An additional 2 tokens need to be added for metadata after all messages have been counted.
*
* @param {*} message
*/
getTokenCountForMessage(message) {
let tokensPerMessage;
let nameAdjustment;
if (this.modelOptions.model.startsWith('gpt-4')) {
tokensPerMessage = 3;
nameAdjustment = 1;
} else {
tokensPerMessage = 4;
nameAdjustment = -1;
}
// Map each property of the message to the number of tokens it contains
const propertyTokenCounts = Object.entries(message).map(([key, value]) => {
// Count the number of tokens in the property value
const numTokens = this.getTokenCount(value);
// Adjust by `nameAdjustment` tokens if the property key is 'name'
const adjustment = (key === 'name') ? nameAdjustment : 0;
return numTokens + adjustment;
});
// Sum the number of tokens in all properties and add `tokensPerMessage` for metadata
return propertyTokenCounts.reduce((a, b) => a + b, tokensPerMessage);
}
}
module.exports = ChatGPTClient;

View file

@ -0,0 +1,299 @@
const BaseClient = require('./BaseClient');
const { google } = require('googleapis');
const { Agent, ProxyAgent } = require('undici');
const {
encoding_for_model: encodingForModel,
get_encoding: getEncoding
} = require('@dqbd/tiktoken');
const tokenizersCache = {};
class GoogleClient extends BaseClient {
constructor(credentials, options = {}) {
super('apiKey', options);
this.client_email = credentials.client_email;
this.project_id = credentials.project_id;
this.private_key = credentials.private_key;
this.sender = 'PaLM2';
this.setOptions(options);
}
constructUrl() {
return `https://us-central1-aiplatform.googleapis.com/v1/projects/${this.project_id}/locations/us-central1/publishers/google/models/${this.modelOptions.model}:predict`;
}
setOptions(options) {
if (this.options && !this.options.replaceOptions) {
// nested options aren't spread properly, so we need to do this manually
this.options.modelOptions = {
...this.options.modelOptions,
...options.modelOptions
};
delete options.modelOptions;
// now we can merge options
this.options = {
...this.options,
...options
};
} else {
this.options = options;
}
this.options.examples = this.options.examples.filter(
(obj) => obj.input.content !== '' && obj.output.content !== ''
);
const modelOptions = this.options.modelOptions || {};
this.modelOptions = {
...modelOptions,
// set some good defaults (check for undefined in some cases because they may be 0)
model: modelOptions.model || 'chat-bison',
temperature: typeof modelOptions.temperature === 'undefined' ? 0.2 : modelOptions.temperature, // 0 - 1, 0.2 is recommended
topP: typeof modelOptions.topP === 'undefined' ? 0.95 : modelOptions.topP, // 0 - 1, default: 0.95
topK: typeof modelOptions.topK === 'undefined' ? 40 : modelOptions.topK // 1-40, default: 40
// stop: modelOptions.stop // no stop method for now
};
this.isChatModel = this.modelOptions.model.startsWith('chat-');
const { isChatModel } = this;
this.isTextModel = this.modelOptions.model.startsWith('text-');
const { isTextModel } = this;
this.maxContextTokens = this.options.maxContextTokens || (isTextModel ? 8000 : 4096);
// The max prompt tokens is determined by the max context tokens minus the max response tokens.
// Earlier messages will be dropped until the prompt is within the limit.
this.maxResponseTokens = this.modelOptions.maxOutputTokens || 1024;
this.maxPromptTokens =
this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
throw new Error(
`maxPromptTokens + maxOutputTokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
this.maxPromptTokens + this.maxResponseTokens
}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`
);
}
this.userLabel = this.options.userLabel || 'User';
this.modelLabel = this.options.modelLabel || 'Assistant';
if (isChatModel) {
// Use these faux tokens to help the AI understand the context since we are building the chat log ourselves.
// Trying to use "<|im_start|>" causes the AI to still generate "<" or "<|" at the end sometimes for some reason,
// without tripping the stop sequences, so I'm using "||>" instead.
this.startToken = '||>';
this.endToken = '';
this.gptEncoder = this.constructor.getTokenizer('cl100k_base');
} else if (isTextModel) {
this.startToken = '<|im_start|>';
this.endToken = '<|im_end|>';
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true, {
'<|im_start|>': 100264,
'<|im_end|>': 100265
});
} else {
// Previously I was trying to use "<|endoftext|>" but there seems to be some bug with OpenAI's token counting
// system that causes only the first "<|endoftext|>" to be counted as 1 token, and the rest are not treated
// as a single token. So we're using this instead.
this.startToken = '||>';
this.endToken = '';
try {
this.gptEncoder = this.constructor.getTokenizer(this.modelOptions.model, true);
} catch {
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true);
}
}
if (!this.modelOptions.stop) {
const stopTokens = [this.startToken];
if (this.endToken && this.endToken !== this.startToken) {
stopTokens.push(this.endToken);
}
stopTokens.push(`\n${this.userLabel}:`);
stopTokens.push('<|diff_marker|>');
// I chose not to do one for `modelLabel` because I've never seen it happen
this.modelOptions.stop = stopTokens;
}
if (this.options.reverseProxyUrl) {
this.completionsUrl = this.options.reverseProxyUrl;
} else {
this.completionsUrl = this.constructUrl();
}
return this;
}
async getClient() {
const scopes = ['https://www.googleapis.com/auth/cloud-platform'];
const jwtClient = new google.auth.JWT(this.client_email, null, this.private_key, scopes);
jwtClient.authorize((err) => {
if (err) {
console.log(err);
throw err;
}
});
return jwtClient;
}
buildMessages(input, { messages = [] }) {
let payload = {
instances: [
{
messages: [...messages, { author: this.userLabel, content: input }]
}
],
parameters: this.options.modelOptions
};
if (this.options.promptPrefix) {
payload.instances[0].context = this.options.promptPrefix;
}
if (this.options.examples.length > 0) {
payload.instances[0].examples = this.options.examples;
}
if (this.isTextModel) {
payload.instances = [
{
prompt: input
}
];
}
if (this.options.debug) {
console.debug('buildMessages');
console.dir(payload, { depth: null });
}
return payload;
}
async getCompletion(input, messages = [], abortController = null) {
if (!abortController) {
abortController = new AbortController();
}
const { debug } = this.options;
const url = this.completionsUrl;
if (debug) {
console.debug();
console.debug(url);
console.debug(this.modelOptions);
console.debug();
}
const opts = {
method: 'POST',
agent: new Agent({
bodyTimeout: 0,
headersTimeout: 0
}),
signal: abortController.signal
};
if (this.options.proxy) {
opts.agent = new ProxyAgent(this.options.proxy);
}
const client = await this.getClient();
const payload = this.buildMessages(input, { messages });
const res = await client.request({ url, method: 'POST', data: payload });
console.dir(res.data, { depth: null });
return res.data;
}
getMessageMapMethod() {
return ((message) => ({
author: message.isCreatedByUser ? this.userLabel : this.modelLabel,
content: message?.content ?? message.text
})).bind(this);
}
getSaveOptions() {
return {
...this.modelOptions
};
}
getBuildMessagesOptions() {
console.log('GoogleClient doesn\'t use getBuildMessagesOptions');
}
async sendMessage(message, opts = {}) {
console.log('GoogleClient: sendMessage', message, opts);
const {
user,
conversationId,
responseMessageId,
saveOptions,
userMessage,
} = await this.handleStartMethods(message, opts);
await this.saveMessageToDatabase(userMessage, saveOptions, user);
let reply = '';
let blocked = false;
try {
const result = await this.getCompletion(message, this.currentMessages, opts.abortController);
blocked = result?.predictions?.[0]?.safetyAttributes?.blocked;
reply =
result?.predictions?.[0]?.candidates?.[0]?.content ||
result?.predictions?.[0]?.content ||
'';
if (blocked === true) {
reply = `Google blocked a proper response to your message:\n${JSON.stringify(
result.predictions[0].safetyAttributes
)}${reply.length > 0 ? `\nAI Response:\n${reply}` : ''}`;
}
if (this.options.debug) {
console.debug('result');
console.debug(result);
}
} catch (err) {
console.error(err);
}
if (this.options.debug) {
console.debug('options');
console.debug(this.options);
}
if (!blocked) {
await this.generateTextStream(reply, opts.onProgress, { delay: 0.5 });
}
const responseMessage = {
messageId: responseMessageId,
conversationId,
parentMessageId: userMessage.messageId,
sender: this.sender,
text: reply,
error: blocked,
isCreatedByUser: false
};
await this.saveMessageToDatabase(responseMessage, saveOptions, user);
return responseMessage;
}
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
if (tokenizersCache[encoding]) {
return tokenizersCache[encoding];
}
let tokenizer;
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
return tokenizer;
}
getTokenCount(text) {
return this.gptEncoder.encode(text, 'all').length;
}
}
module.exports = GoogleClient;

View file

@ -0,0 +1,317 @@
const BaseClient = require('./BaseClient');
const ChatGPTClient = require('./ChatGPTClient');
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('@dqbd/tiktoken');
const { maxTokensMap, genAzureChatCompletion } = require('../../utils');
const tokenizersCache = {};
class OpenAIClient extends BaseClient {
constructor(apiKey, options = {}) {
super(apiKey, options);
this.ChatGPTClient = new ChatGPTClient();
this.buildPrompt = this.ChatGPTClient.buildPrompt.bind(this);
this.getCompletion = this.ChatGPTClient.getCompletion.bind(this);
this.sender = options.sender ?? 'ChatGPT';
this.contextStrategy = options.contextStrategy ? options.contextStrategy.toLowerCase() : 'discard';
this.shouldRefineContext = this.contextStrategy === 'refine';
this.azure = options.azure || false;
if (this.azure) {
this.azureEndpoint = genAzureChatCompletion(this.azure);
}
this.setOptions(options);
}
setOptions(options) {
if (this.options && !this.options.replaceOptions) {
this.options.modelOptions = {
...this.options.modelOptions,
...options.modelOptions,
};
delete options.modelOptions;
this.options = {
...this.options,
...options,
};
} else {
this.options = options;
}
if (this.options.openaiApiKey) {
this.apiKey = this.options.openaiApiKey;
}
const modelOptions = this.options.modelOptions || {};
if (!this.modelOptions) {
this.modelOptions = {
...modelOptions,
model: modelOptions.model || 'gpt-3.5-turbo',
temperature: typeof modelOptions.temperature === 'undefined' ? 0.8 : modelOptions.temperature,
top_p: typeof modelOptions.top_p === 'undefined' ? 1 : modelOptions.top_p,
presence_penalty: typeof modelOptions.presence_penalty === 'undefined' ? 1 : modelOptions.presence_penalty,
stop: modelOptions.stop,
};
}
this.isChatCompletion = this.options.reverseProxyUrl || this.options.localAI || this.modelOptions.model.startsWith('gpt-');
this.isChatGptModel = this.isChatCompletion;
if (this.modelOptions.model === 'text-davinci-003') {
this.isChatCompletion = false;
this.isChatGptModel = false;
}
const { isChatGptModel } = this;
this.isUnofficialChatGptModel = this.modelOptions.model.startsWith('text-chat') || this.modelOptions.model.startsWith('text-davinci-002-render');
this.maxContextTokens = maxTokensMap[this.modelOptions.model] ?? 4095; // 1 less than maximum
this.maxResponseTokens = this.modelOptions.max_tokens || 1024;
this.maxPromptTokens = this.options.maxPromptTokens || (this.maxContextTokens - this.maxResponseTokens);
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
throw new Error(`maxPromptTokens + max_tokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${this.maxPromptTokens + this.maxResponseTokens}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`);
}
this.userLabel = this.options.userLabel || 'User';
this.chatGptLabel = this.options.chatGptLabel || 'ChatGPT';
this.setupTokens();
this.setupTokenizer();
if (!this.modelOptions.stop) {
const stopTokens = [this.startToken];
if (this.endToken && this.endToken !== this.startToken) {
stopTokens.push(this.endToken);
}
stopTokens.push(`\n${this.userLabel}:`);
stopTokens.push('<|diff_marker|>');
this.modelOptions.stop = stopTokens;
}
if (this.options.reverseProxyUrl) {
this.completionsUrl = this.options.reverseProxyUrl;
} else if (isChatGptModel) {
this.completionsUrl = 'https://api.openai.com/v1/chat/completions';
} else {
this.completionsUrl = 'https://api.openai.com/v1/completions';
}
if (this.azureEndpoint) {
this.completionsUrl = this.azureEndpoint;
}
if (this.azureEndpoint && this.options.debug) {
console.debug(`Using Azure endpoint: ${this.azureEndpoint}`, this.azure);
}
return this;
}
setupTokens() {
if (this.isChatCompletion) {
this.startToken = '||>';
this.endToken = '';
} else if (this.isUnofficialChatGptModel) {
this.startToken = '<|im_start|>';
this.endToken = '<|im_end|>';
} else {
this.startToken = '||>';
this.endToken = '';
}
}
setupTokenizer() {
this.encoding = 'text-davinci-003';
if (this.isChatCompletion) {
this.encoding = 'cl100k_base';
this.gptEncoder = this.constructor.getTokenizer(this.encoding);
} else if (this.isUnofficialChatGptModel) {
this.gptEncoder = this.constructor.getTokenizer(this.encoding, true, {
'<|im_start|>': 100264,
'<|im_end|>': 100265,
});
} else {
try {
this.encoding = this.modelOptions.model;
this.gptEncoder = this.constructor.getTokenizer(this.modelOptions.model, true);
} catch {
this.gptEncoder = this.constructor.getTokenizer(this.encoding, true);
}
}
}
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
if (tokenizersCache[encoding]) {
return tokenizersCache[encoding];
}
let tokenizer;
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
return tokenizer;
}
freeAndResetEncoder() {
try {
if (!this.gptEncoder) {
return;
}
this.gptEncoder.free();
delete tokenizersCache[this.encoding];
delete tokenizersCache.count;
this.setupTokenizer();
} catch (error) {
console.log('freeAndResetEncoder error');
console.error(error);
}
}
getTokenCount(text) {
try {
if (tokenizersCache.count >= 25) {
if (this.options.debug) {
console.debug('freeAndResetEncoder: reached 25 encodings, reseting...');
}
this.freeAndResetEncoder();
}
tokenizersCache.count = (tokenizersCache.count || 0) + 1;
return this.gptEncoder.encode(text, 'all').length;
} catch (error) {
this.freeAndResetEncoder();
return this.gptEncoder.encode(text, 'all').length;
}
}
getSaveOptions() {
return {
chatGptLabel: this.options.chatGptLabel,
promptPrefix: this.options.promptPrefix,
...this.modelOptions
};
}
getBuildMessagesOptions(opts) {
return {
isChatCompletion: this.isChatCompletion,
promptPrefix: opts.promptPrefix,
abortController: opts.abortController,
};
}
async buildMessages(messages, parentMessageId, { isChatCompletion = false, promptPrefix = null }) {
if (!isChatCompletion) {
return await this.buildPrompt(messages, parentMessageId, { isChatGptModel: isChatCompletion, promptPrefix });
}
let payload;
let instructions;
let tokenCountMap;
let promptTokens;
let orderedMessages = this.constructor.getMessagesForConversation(messages, parentMessageId);
promptPrefix = (promptPrefix || this.options.promptPrefix || '').trim();
if (promptPrefix) {
promptPrefix = `Instructions:\n${promptPrefix}`;
instructions = {
role: 'system',
name: 'instructions',
content: promptPrefix
};
if (this.contextStrategy) {
instructions.tokenCount = this.getTokenCountForMessage(instructions);
}
}
const formattedMessages = orderedMessages.map((message) => {
let { role: _role, sender, text } = message;
const role = _role ?? sender;
const content = text ?? '';
const formattedMessage = {
role: role?.toLowerCase() === 'user' ? 'user' : 'assistant',
content,
};
if (this.options?.name && formattedMessage.role === 'user') {
formattedMessage.name = this.options.name;
}
if (this.contextStrategy) {
formattedMessage.tokenCount = message.tokenCount ?? this.getTokenCountForMessage(formattedMessage);
}
return formattedMessage;
});
// TODO: need to handle interleaving instructions better
if (this.contextStrategy) {
({ payload, tokenCountMap, promptTokens, messages } = await this.handleContextStrategy({instructions, orderedMessages, formattedMessages}));
}
const result = {
prompt: payload,
promptTokens,
messages,
};
if (tokenCountMap) {
tokenCountMap.instructions = instructions?.tokenCount;
result.tokenCountMap = tokenCountMap;
}
return result;
}
async sendCompletion(payload, opts = {}) {
let reply = '';
let result = null;
if (typeof opts.onProgress === 'function') {
await this.getCompletion(
payload,
(progressMessage) => {
if (progressMessage === '[DONE]') {
return;
}
const token = this.isChatCompletion ? progressMessage.choices?.[0]?.delta?.content : progressMessage.choices?.[0]?.text;
// first event's delta content is always undefined
if (!token) {
return;
}
if (this.options.debug) {
// console.debug(token);
}
if (token === this.endToken) {
return;
}
opts.onProgress(token);
reply += token;
},
opts.abortController || new AbortController(),
);
} else {
result = await this.getCompletion(
payload,
null,
opts.abortController || new AbortController(),
);
if (this.options.debug) {
console.debug(JSON.stringify(result));
}
if (this.isChatCompletion) {
reply = result.choices[0].message.content;
} else {
reply = result.choices[0].text.replace(this.endToken, '');
}
}
return reply.trim();
}
getTokenCountForResponse(response) {
return this.getTokenCountForMessage({
role: 'assistant',
content: response.text,
});
}
}
module.exports = OpenAIClient;

View file

@ -0,0 +1,554 @@
const OpenAIClient = require('./OpenAIClient');
const { ChatOpenAI } = require('langchain/chat_models/openai');
const { CallbackManager } = require('langchain/callbacks');
const { initializeCustomAgent, initializeFunctionsAgent } = require('./agents/');
const { loadTools } = require('./tools/util');
const { SelfReflectionTool } = require('./tools/');
const { HumanChatMessage, AIChatMessage } = require('langchain/schema');
const {
instructions,
imageInstructions,
errorInstructions,
} = require('./prompts/instructions');
class PluginsClient extends OpenAIClient {
constructor(apiKey, options = {}) {
super(apiKey, options);
this.sender = options.sender ?? 'Assistant';
this.tools = [];
this.actions = [];
this.openAIApiKey = apiKey;
this.setOptions(options);
this.executor = null;
}
getActions(input = null) {
let output = 'Internal thoughts & actions taken:\n"';
let actions = input || this.actions;
if (actions[0]?.action && this.functionsAgent) {
actions = actions.map((step) => ({
log: `Action: ${step.action?.tool || ''}\nInput: ${JSON.stringify(step.action?.toolInput) || ''}\nObservation: ${step.observation}`
}));
} else if (actions[0]?.action) {
actions = actions.map((step) => ({
log: `${step.action.log}\nObservation: ${step.observation}`
}));
}
actions.forEach((actionObj, index) => {
output += `${actionObj.log}`;
if (index < actions.length - 1) {
output += '\n';
}
});
return output + '"';
}
buildErrorInput(message, errorMessage) {
const log = errorMessage.includes('Could not parse LLM output:')
? `A formatting error occurred with your response to the human's last message. You didn't follow the formatting instructions. Remember to ${instructions}`
: `You encountered an error while replying to the human's last message. Attempt to answer again or admit an answer cannot be given.\nError: ${errorMessage}`;
return `
${log}
${this.getActions()}
Human's last message: ${message}
`;
}
buildPromptPrefix(result, message) {
if ((result.output && result.output.includes('N/A')) || result.output === undefined) {
return null;
}
if (
result?.intermediateSteps?.length === 1 &&
result?.intermediateSteps[0]?.action?.toolInput === 'N/A'
) {
return null;
}
const internalActions =
result?.intermediateSteps?.length > 0
? this.getActions(result.intermediateSteps)
: 'Internal Actions Taken: None';
const toolBasedInstructions = internalActions.toLowerCase().includes('image')
? imageInstructions
: '';
const errorMessage = result.errorMessage ? `${errorInstructions} ${result.errorMessage}\n` : '';
const preliminaryAnswer =
result.output?.length > 0 ? `Preliminary Answer: "${result.output.trim()}"` : '';
const prefix = preliminaryAnswer
? `review and improve the answer you generated using plugins in response to the User Message below. The user hasn't seen your answer or thoughts yet.`
: 'respond to the User Message below based on your preliminary thoughts & actions.';
return `As a helpful AI Assistant, ${prefix}${errorMessage}\n${internalActions}
${preliminaryAnswer}
Reply conversationally to the User based on your ${
preliminaryAnswer ? 'preliminary answer, ' : ''
}internal actions, thoughts, and observations, making improvements wherever possible, but do not modify URLs.
${
preliminaryAnswer
? ''
: '\nIf there is an incomplete thought or action, you are expected to complete it in your response now.\n'
}You must cite sources if you are using any web links. ${toolBasedInstructions}
Only respond with your conversational reply to the following User Message:
"${message}"`;
}
setOptions(options) {
this.agentOptions = options.agentOptions;
this.functionsAgent = this.agentOptions?.agent === 'functions';
this.agentIsGpt3 = this.agentOptions?.model.startsWith('gpt-3');
if (this.functionsAgent && this.agentOptions.model) {
this.agentOptions.model = this.getFunctionModelName(this.agentOptions.model);
}
super.setOptions(options);
this.isGpt3 = this.modelOptions.model.startsWith('gpt-3');
if (this.reverseProxyUrl) {
this.langchainProxy = this.reverseProxyUrl.match(/.*v1/)[0];
}
}
getSaveOptions() {
return {
chatGptLabel: this.options.chatGptLabel,
promptPrefix: this.options.promptPrefix,
...this.modelOptions,
agentOptions: this.agentOptions,
};
}
saveLatestAction(action) {
this.actions.push(action);
}
getFunctionModelName(input) {
const prefixMap = {
'gpt-4': 'gpt-4-0613',
'gpt-4-32k': 'gpt-4-32k-0613',
'gpt-3.5-turbo': 'gpt-3.5-turbo-0613'
};
const prefix = Object.keys(prefixMap).find(key => input.startsWith(key));
return prefix ? prefixMap[prefix] : 'gpt-3.5-turbo-0613';
}
getBuildMessagesOptions(opts) {
return {
isChatCompletion: true,
promptPrefix: opts.promptPrefix,
abortController: opts.abortController,
};
}
createLLM(modelOptions, configOptions) {
let credentials = { openAIApiKey: this.openAIApiKey };
if (this.azure) {
credentials = { ...this.azure };
}
if (this.options.debug) {
console.debug('createLLM: configOptions');
console.debug(configOptions);
}
return new ChatOpenAI({ credentials, ...modelOptions }, configOptions);
}
async initialize({ user, message, onAgentAction, onChainEnd, signal }) {
const modelOptions = {
modelName: this.agentOptions.model,
temperature: this.agentOptions.temperature
};
const configOptions = {};
if (this.langchainProxy) {
configOptions.basePath = this.langchainProxy;
}
const model = this.createLLM(modelOptions, configOptions);
if (this.options.debug) {
console.debug(`<-----Agent Model: ${model.modelName} | Temp: ${model.temperature}----->`);
}
this.availableTools = await loadTools({
user,
model,
tools: this.options.tools,
functions: this.functionsAgent,
options: {
openAIApiKey: this.openAIApiKey
}
});
// load tools
for (const tool of this.options.tools) {
const validTool = this.availableTools[tool];
if (tool === 'plugins') {
const plugins = await validTool();
this.tools = [...this.tools, ...plugins];
} else if (validTool) {
this.tools.push(await validTool());
}
}
if (this.options.debug) {
console.debug('Requested Tools');
console.debug(this.options.tools);
console.debug('Loaded Tools');
console.debug(this.tools.map((tool) => tool.name));
}
if (this.tools.length > 0 && !this.functionsAgent) {
this.tools.push(new SelfReflectionTool({ message, isGpt3: false }));
} else if (this.tools.length === 0) {
return;
}
const handleAction = (action, callback = null) => {
this.saveLatestAction(action);
if (this.options.debug) {
console.debug('Latest Agent Action ', this.actions[this.actions.length - 1]);
}
if (typeof callback === 'function') {
callback(action);
}
};
// Map Messages to Langchain format
const pastMessages = this.currentMessages.map(
msg => msg?.isCreatedByUser || msg?.role?.toLowerCase() === 'user'
? new HumanChatMessage(msg.text)
: new AIChatMessage(msg.text));
if (this.options.debug) {
console.debug('Current Messages');
console.debug(this.currentMessages);
console.debug('Past Messages');
console.debug(pastMessages);
}
// initialize agent
const initializer = this.functionsAgent ? initializeFunctionsAgent : initializeCustomAgent;
this.executor = await initializer({
model,
signal,
pastMessages,
tools: this.tools,
currentDateString: this.currentDateString,
verbose: this.options.debug,
returnIntermediateSteps: true,
callbackManager: CallbackManager.fromHandlers({
async handleAgentAction(action) {
handleAction(action, onAgentAction);
},
async handleChainEnd(action) {
if (typeof onChainEnd === 'function') {
onChainEnd(action);
}
}
})
});
if (this.options.debug) {
console.debug('Loaded agent.');
}
}
async executorCall(message, signal) {
let errorMessage = '';
const maxAttempts = 1;
for (let attempts = 1; attempts <= maxAttempts; attempts++) {
const errorInput = this.buildErrorInput(message, errorMessage);
const input = attempts > 1 ? errorInput : message;
if (this.options.debug) {
console.debug(`Attempt ${attempts} of ${maxAttempts}`);
}
if (this.options.debug && errorMessage.length > 0) {
console.debug('Caught error, input:', input);
}
try {
this.result = await this.executor.call({ input, signal });
break; // Exit the loop if the function call is successful
} catch (err) {
console.error(err);
errorMessage = err.message;
if (attempts === maxAttempts) {
this.result.output = `Encountered an error while attempting to respond. Error: ${err.message}`;
this.result.intermediateSteps = this.actions;
this.result.errorMessage = errorMessage;
break;
}
}
}
}
addImages(intermediateSteps, responseMessage) {
if (!intermediateSteps || !responseMessage) {
return;
}
intermediateSteps.forEach(step => {
const { observation } = step;
if (!observation || !observation.includes('![')) {
return;
}
if (!responseMessage.text.includes(observation)) {
responseMessage.text += '\n' + observation;
if (this.options.debug) {
console.debug('added image from intermediateSteps');
}
}
});
}
async handleResponseMessage(responseMessage, saveOptions, user) {
responseMessage.tokenCount = this.getTokenCountForResponse(responseMessage);
responseMessage.completionTokens = responseMessage.tokenCount;
await this.saveMessageToDatabase(responseMessage, saveOptions, user);
delete responseMessage.tokenCount;
return { ...responseMessage, ...this.result };
}
async sendMessage(message, opts = {}) {
const completionMode = this.options.tools.length === 0;
if (completionMode) {
this.setOptions(opts);
return super.sendMessage(message, opts);
}
console.log('Plugins sendMessage', message, opts);
const {
user,
conversationId,
responseMessageId,
saveOptions,
userMessage,
onAgentAction,
onChainEnd,
} = await this.handleStartMethods(message, opts);
let { prompt: payload, tokenCountMap, promptTokens, messages } = await this.buildMessages(
this.currentMessages,
userMessage.messageId,
this.getBuildMessagesOptions({
promptPrefix: null,
abortController: this.abortController,
}),
);
if (this.options.debug) {
console.debug('buildMessages: Messages');
console.debug(messages);
}
if (tokenCountMap) {
payload = payload.map((message, i) => {
const { tokenCount, ...messageWithoutTokenCount } = message;
// userMessage is always the last one in the payload
if (i === payload.length - 1) {
userMessage.tokenCount = message.tokenCount;
console.debug(`Token count for user message: ${tokenCount}`, `Instruction Tokens: ${tokenCountMap.instructions || 'N/A'}`);
}
return messageWithoutTokenCount;
});
this.handleTokenCountMap(tokenCountMap);
}
this.result = {};
if (messages) {
this.currentMessages = messages;
}
await this.saveMessageToDatabase(userMessage, saveOptions, user);
const responseMessage = {
messageId: responseMessageId,
conversationId,
parentMessageId: userMessage.messageId,
isCreatedByUser: false,
model: this.modelOptions.model,
sender: this.sender,
promptTokens,
};
await this.initialize({
user,
message,
onAgentAction,
onChainEnd,
signal: this.abortController.signal
});
await this.executorCall(message, this.abortController.signal);
// If message was aborted mid-generation
if (this.result?.errorMessage?.length > 0 && this.result?.errorMessage?.includes('cancel')) {
responseMessage.text = 'Cancelled.';
return await this.handleResponseMessage(responseMessage, saveOptions, user);
}
if (this.agentOptions.skipCompletion && this.result.output) {
responseMessage.text = this.result.output;
this.addImages(this.result.intermediateSteps, responseMessage);
await this.generateTextStream(this.result.output, opts.onProgress);
return await this.handleResponseMessage(responseMessage, saveOptions, user);
}
if (this.options.debug) {
console.debug('Plugins completion phase: this.result');
console.debug(this.result);
}
const promptPrefix = this.buildPromptPrefix(this.result, message);
if (this.options.debug) {
console.debug('Plugins: promptPrefix');
console.debug(promptPrefix);
}
payload = await this.buildCompletionPrompt({
messages: this.currentMessages,
promptPrefix,
});
if (this.options.debug) {
console.debug('buildCompletionPrompt Payload');
console.debug(payload);
}
responseMessage.text = await this.sendCompletion(payload, opts);
return await this.handleResponseMessage(responseMessage, saveOptions, user);
}
async buildCompletionPrompt({ messages, promptPrefix: _promptPrefix }) {
if (this.options.debug) {
console.debug('buildCompletionPrompt messages', messages);
}
const orderedMessages = messages;
let promptPrefix = _promptPrefix.trim();
// If the prompt prefix doesn't end with the end token, add it.
if (!promptPrefix.endsWith(`${this.endToken}`)) {
promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n`;
}
promptPrefix = `${this.startToken}Instructions:\n${promptPrefix}`;
const promptSuffix = `${this.startToken}${this.chatGptLabel ?? 'Assistant'}:\n`;
const instructionsPayload = {
role: 'system',
name: 'instructions',
content: promptPrefix
};
const messagePayload = {
role: 'system',
content: promptSuffix
};
if (this.isGpt3) {
instructionsPayload.role = 'user';
messagePayload.role = 'user';
instructionsPayload.content += `\n${promptSuffix}`;
}
// testing if this works with browser endpoint
if (!this.isGpt3 && this.reverseProxyUrl) {
instructionsPayload.role = 'user';
}
let currentTokenCount =
this.getTokenCountForMessage(instructionsPayload) +
this.getTokenCountForMessage(messagePayload);
let promptBody = '';
const maxTokenCount = this.maxPromptTokens;
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
// Do this within a recursive async function so that it doesn't block the event loop for too long.
const buildPromptBody = async () => {
if (currentTokenCount < maxTokenCount && orderedMessages.length > 0) {
const message = orderedMessages.pop();
// const roleLabel = message.role === 'User' ? this.userLabel : this.chatGptLabel;
const roleLabel = message.role;
let messageString = `${this.startToken}${roleLabel}:\n${message.text}${this.endToken}\n`;
let newPromptBody;
if (promptBody) {
newPromptBody = `${messageString}${promptBody}`;
} else {
// Always insert prompt prefix before the last user message, if not gpt-3.5-turbo.
// This makes the AI obey the prompt instructions better, which is important for custom instructions.
// After a bunch of testing, it doesn't seem to cause the AI any confusion, even if you ask it things
// like "what's the last thing I wrote?".
newPromptBody = `${promptPrefix}${messageString}${promptBody}`;
}
const tokenCountForMessage = this.getTokenCount(messageString);
const newTokenCount = currentTokenCount + tokenCountForMessage;
if (newTokenCount > maxTokenCount) {
if (promptBody) {
// This message would put us over the token limit, so don't add it.
return false;
}
// This is the first message, so we can't add it. Just throw an error.
throw new Error(
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`
);
}
promptBody = newPromptBody;
currentTokenCount = newTokenCount;
// wait for next tick to avoid blocking the event loop
await new Promise((resolve) => setTimeout(resolve, 0));
return buildPromptBody();
}
return true;
};
await buildPromptBody();
const prompt = promptBody;
messagePayload.content = prompt;
// Add 2 tokens for metadata after all messages have been counted.
currentTokenCount += 2;
if (this.isGpt3 && messagePayload.content.length > 0) {
const context = `Chat History:\n`;
messagePayload.content = `${context}${prompt}`;
currentTokenCount += this.getTokenCount(context);
}
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
this.modelOptions.max_tokens = Math.min(
this.maxContextTokens - currentTokenCount,
this.maxResponseTokens
);
if (this.isGpt3) {
messagePayload.content += promptSuffix;
return [instructionsPayload, messagePayload];
}
const result = [messagePayload, instructionsPayload];
if (this.functionsAgent && !this.isGpt3) {
result[1].content = `${result[1].content}\nSure thing! Here is the output you requested:\n`;
}
return result.filter((message) => message.content.length > 0);
}
}
module.exports = PluginsClient;

View file

@ -0,0 +1,59 @@
const { Readable } = require('stream');
class TextStream extends Readable {
constructor(text, options = {}) {
super(options);
this.text = text;
this.currentIndex = 0;
this.delay = options.delay || 20; // Time in milliseconds
}
_read() {
const minChunkSize = 2;
const maxChunkSize = 4;
const { delay } = this;
if (this.currentIndex < this.text.length) {
setTimeout(() => {
const remainingChars = this.text.length - this.currentIndex;
const chunkSize = Math.min(this.randomInt(minChunkSize, maxChunkSize + 1), remainingChars);
const chunk = this.text.slice(this.currentIndex, this.currentIndex + chunkSize);
this.push(chunk);
this.currentIndex += chunkSize;
}, delay);
} else {
this.push(null); // signal end of data
}
}
randomInt(min, max) {
return Math.floor(Math.random() * (max - min)) + min;
}
async processTextStream(onProgressCallback) {
const streamPromise = new Promise((resolve, reject) => {
this.on('data', (chunk) => {
onProgressCallback(chunk.toString());
});
this.on('end', () => {
console.log('Stream ended');
resolve();
});
this.on('error', (err) => {
reject(err);
});
});
try {
await streamPromise;
} catch (err) {
console.error('Error processing text stream:', err);
// Handle the error appropriately, e.g., return an error message or throw an error
}
}
}
module.exports = TextStream;

View file

@ -0,0 +1,50 @@
const { ZeroShotAgent } = require('langchain/agents');
const { PromptTemplate, renderTemplate } = require('langchain/prompts');
const { gpt3, gpt4 } = require('./instructions');
class CustomAgent extends ZeroShotAgent {
constructor(input) {
super(input);
}
_stop() {
return [`\nObservation:`, `\nObservation 1:`];
}
static createPrompt(tools, opts = {}) {
const { currentDateString, model } = opts;
const inputVariables = ['input', 'chat_history', 'agent_scratchpad'];
let prefix, instructions, suffix;
if (model.startsWith('gpt-3')) {
prefix = gpt3.prefix;
instructions = gpt3.instructions;
suffix = gpt3.suffix;
} else if (model.startsWith('gpt-4')) {
prefix = gpt4.prefix;
instructions = gpt4.instructions;
suffix = gpt4.suffix;
}
const toolStrings = tools
.filter((tool) => tool.name !== 'self-reflection')
.map((tool) => `${tool.name}: ${tool.description}`)
.join('\n');
const toolNames = tools.map((tool) => tool.name);
const formatInstructions = (0, renderTemplate)(instructions, 'f-string', {
tool_names: toolNames
});
const template = [
`Date: ${currentDateString}\n${prefix}`,
toolStrings,
formatInstructions,
suffix
].join('\n\n');
return new PromptTemplate({
template,
inputVariables
});
}
}
module.exports = CustomAgent;

View file

@ -0,0 +1,54 @@
const CustomAgent = require('./CustomAgent');
const { CustomOutputParser } = require('./outputParser');
const { AgentExecutor } = require('langchain/agents');
const { LLMChain } = require('langchain/chains');
const { BufferMemory, ChatMessageHistory } = require('langchain/memory');
const {
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate
} = require('langchain/prompts');
const initializeCustomAgent = async ({
tools,
model,
pastMessages,
currentDateString,
...rest
}) => {
let prompt = CustomAgent.createPrompt(tools, { currentDateString, model: model.modelName });
const chatPrompt = ChatPromptTemplate.fromPromptMessages([
new SystemMessagePromptTemplate(prompt),
HumanMessagePromptTemplate.fromTemplate(`{chat_history}
Query: {input}
{agent_scratchpad}`)
]);
const outputParser = new CustomOutputParser({ tools });
const memory = new BufferMemory({
chatHistory: new ChatMessageHistory(pastMessages),
// returnMessages: true, // commenting this out retains memory
memoryKey: 'chat_history',
humanPrefix: 'User',
aiPrefix: 'Assistant',
inputKey: 'input',
outputKey: 'output'
});
const llmChain = new LLMChain({
prompt: chatPrompt,
llm: model
});
const agent = new CustomAgent({
llmChain,
outputParser,
allowedTools: tools.map((tool) => tool.name)
});
return AgentExecutor.fromAgentAndTools({ agent, tools, memory, ...rest });
};
module.exports = initializeCustomAgent;

View file

@ -0,0 +1,203 @@
/*
module.exports = `You are ChatGPT, a Large Language model with useful tools.
Talk to the human and provide meaningful answers when questions are asked.
Use the tools when you need them, but use your own knowledge if you are confident of the answer. Keep answers short and concise.
A tool is not usually needed for creative requests, so do your best to answer them without tools.
Avoid repeating identical answers if it appears before. Only fulfill the human's requests, do not create extra steps beyond what the human has asked for.
Your input for 'Action' should be the name of tool used only.
Be honest. If you can't answer something, or a tool is not appropriate, say you don't know or answer to the best of your ability.
Attempt to fulfill the human's requests in as few actions as possible`;
*/
// module.exports = `You are ChatGPT, a highly knowledgeable and versatile large language model.
// Engage with the Human conversationally, providing concise and meaningful answers to questions. Utilize built-in tools when necessary, except for creative requests, where relying on your own knowledge is preferred. Aim for variety and avoid repetitive answers.
// For your 'Action' input, state the name of the tool used only, and honor user requests without adding extra steps. Always be honest; if you cannot provide an appropriate answer or tool, admit that or do your best.
// Strive to meet the user's needs efficiently with minimal actions.`;
// import {
// BasePromptTemplate,
// BaseStringPromptTemplate,
// SerializedBasePromptTemplate,
// renderTemplate,
// } from "langchain/prompts";
// prefix: `You are ChatGPT, a highly knowledgeable and versatile large language model.
// Your objective is to help users by understanding their intent and choosing the best action. Prioritize direct, specific responses. Use concise, varied answers and rely on your knowledge for creative tasks. Utilize tools when needed, and structure results for machine compatibility.
// prefix: `Objective: to comprehend human intentions based on user input and available tools. Goal: identify the best action to directly address the human's query. In your subsequent steps, you will utilize the chosen action. You may select multiple actions and list them in a meaningful order. Prioritize actions that directly relate to the user's query over general ones. Ensure that the generated thought is highly specific and explicit to best match the user's expectations. Construct the result in a manner that an online open-API would most likely expect. Provide concise and meaningful answers to human queries. Utilize tools when necessary. Relying on your own knowledge is preferred for creative requests. Aim for variety and avoid repetitive answers.
// # Available Actions & Tools:
// N/A: no suitable action, use your own knowledge.`,
// suffix: `Remember, all your responses MUST adhere to the described format and only respond if the format is followed. Output exactly with the requested format, avoiding any other text as this will be parsed by a machine. Following 'Action:', provide only one of the actions listed above. If a tool is not necessary, deduce this quickly and finish your response. Honor the human's requests without adding extra steps. Carry out tasks in the sequence written by the human. Always be honest; if you cannot provide an appropriate answer or tool, do your best with your own knowledge. Strive to meet the user's needs efficiently with minimal actions.`;
module.exports = {
'gpt3-v1': {
prefix: `Objective: Understand human intentions using user input and available tools. Goal: Identify the most suitable actions to directly address user queries.
When responding:
- Choose actions relevant to the user's query, using multiple actions in a logical order if needed.
- Prioritize direct and specific thoughts to meet user expectations.
- Format results in a way compatible with open-API expectations.
- Offer concise, meaningful answers to user queries.
- Use tools when necessary but rely on your own knowledge for creative requests.
- Strive for variety, avoiding repetitive responses.
# Available Actions & Tools:
N/A: No suitable action; use your own knowledge.`,
instructions: `Always adhere to the following format in your response to indicate actions taken:
Thought: Summarize your thought process.
Action: Select an action from [{tool_names}].
Action Input: Define the action's input.
Observation: Report the action's result.
Repeat steps 1-4 as needed, in order. When not using a tool, use N/A for Action, provide the result as Action Input, and include an Observation.
Upon reaching the final answer, use this format after completing all necessary actions:
Thought: Indicate that you've determined the final answer.
Final Answer: Present the answer to the user's query.`,
suffix: `Keep these guidelines in mind when crafting your response:
- Strictly adhere to the Action format for all responses, as they will be machine-parsed.
- If a tool is unnecessary, quickly move to the Thought/Final Answer format.
- Follow the logical sequence provided by the user without adding extra steps.
- Be honest; if you can't provide an appropriate answer using the given tools, use your own knowledge.
- Aim for efficiency and minimal actions to meet the user's needs effectively.`,
},
'gpt3-v2': {
prefix: `Objective: Understand the human's query with available actions & tools. Let's work this out in a step by step way to be sure we fulfill the query.
When responding:
- Choose actions relevant to the user's query, using multiple actions in a logical order if needed.
- Prioritize direct and specific thoughts to meet user expectations.
- Format results in a way compatible with open-API expectations.
- Offer concise, meaningful answers to user queries.
- Use tools when necessary but rely on your own knowledge for creative requests.
- Strive for variety, avoiding repetitive responses.
# Available Actions & Tools:
N/A: No suitable action; use your own knowledge.`,
instructions: `I want you to respond with this format and this format only, without comments or explanations, to indicate actions taken:
\`\`\`
Thought: Summarize your thought process.
Action: Select an action from [{tool_names}].
Action Input: Define the action's input.
Observation: Report the action's result.
\`\`\`
Repeat the format for each action as needed. When not using a tool, use N/A for Action, provide the result as Action Input, and include an Observation.
Upon reaching the final answer, use this format after completing all necessary actions:
\`\`\`
Thought: Indicate that you've determined the final answer.
Final Answer: A conversational reply to the user's query as if you were answering them directly.
\`\`\``,
suffix: `Keep these guidelines in mind when crafting your response:
- Strictly adhere to the Action format for all responses, as they will be machine-parsed.
- If a tool is unnecessary, quickly move to the Thought/Final Answer format.
- Follow the logical sequence provided by the user without adding extra steps.
- Be honest; if you can't provide an appropriate answer using the given tools, use your own knowledge.
- Aim for efficiency and minimal actions to meet the user's needs effectively.`,
},
gpt3: {
prefix: `Objective: Understand the human's query with available actions & tools. Let's work this out in a step by step way to be sure we fulfill the query.
Use available actions and tools judiciously.
# Available Actions & Tools:
N/A: No suitable action; use your own knowledge.`,
instructions: `I want you to respond with this format and this format only, without comments or explanations, to indicate actions taken:
\`\`\`
Thought: Your thought process.
Action: Action from [{tool_names}].
Action Input: Action's input.
Observation: Action's result.
\`\`\`
For each action, repeat the format. If no tool is used, use N/A for Action, and provide the result as Action Input.
Finally, complete with:
\`\`\`
Thought: Convey final answer determination.
Final Answer: Reply to user's query conversationally.
\`\`\``,
suffix: `Remember:
- Adhere to the Action format strictly for parsing.
- Transition quickly to Thought/Final Answer format when a tool isn't needed.
- Follow user's logic without superfluous steps.
- If unable to use tools for a fitting answer, use your knowledge.
- Strive for efficient, minimal actions.`,
},
'gpt4-v1': {
prefix: `Objective: Understand the human's query with available actions & tools. Let's work this out in a step by step way to be sure we fulfill the query.
When responding:
- Choose actions relevant to the query, using multiple actions in a step by step way.
- Prioritize direct and specific thoughts to meet user expectations.
- Be precise and offer meaningful answers to user queries.
- Use tools when necessary but rely on your own knowledge for creative requests.
- Strive for variety, avoiding repetitive responses.
# Available Actions & Tools:
N/A: No suitable action; use your own knowledge.`,
instructions: `I want you to respond with this format and this format only, without comments or explanations, to indicate actions taken:
\`\`\`
Thought: Summarize your thought process.
Action: Select an action from [{tool_names}].
Action Input: Define the action's input.
Observation: Report the action's result.
\`\`\`
Repeat the format for each action as needed. When not using a tool, use N/A for Action, provide the result as Action Input, and include an Observation.
Upon reaching the final answer, use this format after completing all necessary actions:
\`\`\`
Thought: Indicate that you've determined the final answer.
Final Answer: A conversational reply to the user's query as if you were answering them directly.
\`\`\``,
suffix: `Keep these guidelines in mind when crafting your final response:
- Strictly adhere to the Action format for all responses.
- If a tool is unnecessary, quickly move to the Thought/Final Answer format, only if no further actions are possible or necessary.
- Follow the logical sequence provided by the user without adding extra steps.
- Be honest: if you can't provide an appropriate answer using the given tools, use your own knowledge.
- Aim for efficiency and minimal actions to meet the user's needs effectively.`,
},
gpt4: {
prefix: `Objective: Understand the human's query with available actions & tools. Let's work this out in a step by step way to be sure we fulfill the query.
Use available actions and tools judiciously.
# Available Actions & Tools:
N/A: No suitable action; use your own knowledge.`,
instructions: `Respond in this specific format without extraneous comments:
\`\`\`
Thought: Your thought process.
Action: Action from [{tool_names}].
Action Input: Action's input.
Observation: Action's result.
\`\`\`
For each action, repeat the format. If no tool is used, use N/A for Action, and provide the result as Action Input.
Finally, complete with:
\`\`\`
Thought: Indicate that you've determined the final answer.
Final Answer: A conversational reply to the user's query, including your full answer.
\`\`\``,
suffix: `Remember:
- Adhere to the Action format strictly for parsing.
- Transition quickly to Thought/Final Answer format when a tool isn't needed.
- Follow user's logic without superfluous steps.
- If unable to use tools for a fitting answer, use your knowledge.
- Strive for efficient, minimal actions.`,
},
};

View file

@ -0,0 +1,218 @@
const { ZeroShotAgentOutputParser } = require('langchain/agents');
class CustomOutputParser extends ZeroShotAgentOutputParser {
constructor(fields) {
super(fields);
this.tools = fields.tools;
this.longestToolName = '';
for (const tool of this.tools) {
if (tool.name.length > this.longestToolName.length) {
this.longestToolName = tool.name;
}
}
this.finishToolNameRegex = /(?:the\s+)?final\s+answer:\s*/i;
this.actionValues =
/(?:Action(?: [1-9])?:) ([\s\S]*?)(?:\n(?:Action Input(?: [1-9])?:) ([\s\S]*?))?$/i;
this.actionInputRegex = /(?:Action Input(?: *\d*):) ?([\s\S]*?)$/i;
this.thoughtRegex = /(?:Thought(?: *\d*):) ?([\s\S]*?)$/i;
}
getValidTool(text) {
let result = false;
for (const tool of this.tools) {
const { name } = tool;
const toolIndex = text.indexOf(name);
if (toolIndex !== -1) {
result = name;
break;
}
}
return result;
}
checkIfValidTool(text) {
let isValidTool = false;
for (const tool of this.tools) {
const { name } = tool;
if (text === name) {
isValidTool = true;
break;
}
}
return isValidTool;
}
async parse(text) {
const finalMatch = text.match(this.finishToolNameRegex);
// if (text.includes(this.finishToolName)) {
// const parts = text.split(this.finishToolName);
// const output = parts[parts.length - 1].trim();
// return {
// returnValues: { output },
// log: text
// };
// }
if (finalMatch) {
const output = text.substring(finalMatch.index + finalMatch[0].length).trim();
return {
returnValues: { output },
log: text
};
}
const match = this.actionValues.exec(text); // old v2
if (!match) {
console.log(
'\n\n<----------------------HIT NO MATCH PARSING ERROR---------------------->\n\n',
match
);
const thoughts = text.replace(/[tT]hought:/, '').split('\n');
// return {
// tool: 'self-reflection',
// toolInput: thoughts[0],
// log: thoughts.slice(1).join('\n')
// };
return {
returnValues: { output: thoughts[0] },
log: thoughts.slice(1).join('\n')
};
}
let selectedTool = match?.[1].trim().toLowerCase();
if (match && selectedTool === 'n/a') {
console.log(
'\n\n<----------------------HIT N/A PARSING ERROR---------------------->\n\n',
match
);
return {
tool: 'self-reflection',
toolInput: match[2]?.trim().replace(/^"+|"+$/g, '') ?? '',
log: text
};
}
let toolIsValid = this.checkIfValidTool(selectedTool);
if (match && !toolIsValid) {
console.log(
'\n\n<----------------Tool invalid: Re-assigning Selected Tool---------------->\n\n',
match
);
selectedTool = this.getValidTool(selectedTool);
}
if (match && !selectedTool) {
console.log(
'\n\n<----------------------HIT INVALID TOOL PARSING ERROR---------------------->\n\n',
match
);
selectedTool = 'self-reflection';
}
if (match && !match[2]) {
console.log(
'\n\n<----------------------HIT NO ACTION INPUT PARSING ERROR---------------------->\n\n',
match
);
// In case there is no action input, let's double-check if there is an action input in 'text' variable
const actionInputMatch = this.actionInputRegex.exec(text);
const thoughtMatch = this.thoughtRegex.exec(text);
if (actionInputMatch) {
return {
tool: selectedTool,
toolInput: actionInputMatch[1].trim(),
log: text
};
}
if (thoughtMatch && !actionInputMatch) {
return {
tool: selectedTool,
toolInput: thoughtMatch[1].trim(),
log: text
};
}
}
if (match && selectedTool.length > this.longestToolName.length) {
console.log('\n\n<----------------------HIT LONG PARSING ERROR---------------------->\n\n');
let action, input, thought;
let firstIndex = Infinity;
for (const tool of this.tools) {
const { name } = tool;
const toolIndex = text.indexOf(name);
if (toolIndex !== -1 && toolIndex < firstIndex) {
firstIndex = toolIndex;
action = name;
}
}
// In case there is no action input, let's double-check if there is an action input in 'text' variable
const actionInputMatch = this.actionInputRegex.exec(text);
if (action && actionInputMatch) {
console.log(
'\n\n<------Matched Action Input in Long Parsing Error------>\n\n',
actionInputMatch
);
return {
tool: action,
toolInput: actionInputMatch[1].trim().replaceAll('"', ''),
log: text
};
}
if (action) {
const actionEndIndex = text.indexOf('Action:', firstIndex + action.length);
const inputText = text
.slice(firstIndex + action.length, actionEndIndex !== -1 ? actionEndIndex : undefined)
.trim();
const inputLines = inputText.split('\n');
input = inputLines[0];
if (inputLines.length > 1) {
thought = inputLines.slice(1).join('\n');
}
const returnValues = {
tool: action,
toolInput: input,
log: thought || inputText
};
const inputMatch = this.actionValues.exec(returnValues.log); //new
if (inputMatch) {
console.log('inputMatch');
console.dir(inputMatch, { depth: null });
returnValues.toolInput = inputMatch[1].replaceAll('"', '').trim();
returnValues.log = returnValues.log.replace(this.actionValues, '');
}
return returnValues;
} else {
console.log('No valid tool mentioned.', this.tools, text);
return {
tool: 'self-reflection',
toolInput: 'Hypothetical actions: \n"' + text + '"\n',
log: 'Thought: I need to look at my hypothetical actions and try one'
};
}
// if (action && input) {
// console.log('Action:', action);
// console.log('Input:', input);
// }
}
return {
tool: selectedTool,
toolInput: match[2]?.trim()?.replace(/^"+|"+$/g, '') ?? '',
log: text
};
}
}
module.exports = { CustomOutputParser };

View file

@ -0,0 +1,120 @@
const { Agent } = require('langchain/agents');
const { LLMChain } = require('langchain/chains');
const { FunctionChatMessage, AIChatMessage } = require('langchain/schema');
const {
ChatPromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate
} = require('langchain/prompts');
const PREFIX = `You are a helpful AI assistant.`;
function parseOutput(message) {
if (message.additional_kwargs.function_call) {
const function_call = message.additional_kwargs.function_call;
return {
tool: function_call.name,
toolInput: function_call.arguments ? JSON.parse(function_call.arguments) : {},
log: message.text
};
} else {
return { returnValues: { output: message.text }, log: message.text };
}
}
class FunctionsAgent extends Agent {
constructor(input) {
super({ ...input, outputParser: undefined });
this.tools = input.tools;
}
lc_namespace = ['langchain', 'agents', 'openai'];
_agentType() {
return 'openai-functions';
}
observationPrefix() {
return 'Observation: ';
}
llmPrefix() {
return 'Thought:';
}
_stop() {
return ['Observation:'];
}
static createPrompt(_tools, fields) {
const { prefix = PREFIX, currentDateString } = fields || {};
return ChatPromptTemplate.fromPromptMessages([
SystemMessagePromptTemplate.fromTemplate(`Date: ${currentDateString}\n${prefix}`),
new MessagesPlaceholder('chat_history'),
HumanMessagePromptTemplate.fromTemplate(`Query: {input}`),
new MessagesPlaceholder('agent_scratchpad'),
]);
}
static fromLLMAndTools(llm, tools, args) {
FunctionsAgent.validateTools(tools);
const prompt = FunctionsAgent.createPrompt(tools, args);
const chain = new LLMChain({
prompt,
llm,
callbacks: args?.callbacks
});
return new FunctionsAgent({
llmChain: chain,
allowedTools: tools.map((t) => t.name),
tools
});
}
async constructScratchPad(steps) {
return steps.flatMap(({ action, observation }) => [
new AIChatMessage('', {
function_call: {
name: action.tool,
arguments: JSON.stringify(action.toolInput)
}
}),
new FunctionChatMessage(observation, action.tool)
]);
}
async plan(steps, inputs, callbackManager) {
// Add scratchpad and stop to inputs
const thoughts = await this.constructScratchPad(steps);
const newInputs = Object.assign({}, inputs, { agent_scratchpad: thoughts });
if (this._stop().length !== 0) {
newInputs.stop = this._stop();
}
// Split inputs between prompt and llm
const llm = this.llmChain.llm;
const valuesForPrompt = Object.assign({}, newInputs);
const valuesForLLM = {
tools: this.tools
};
for (let i = 0; i < this.llmChain.llm.callKeys.length; i++) {
const key = this.llmChain.llm.callKeys[i];
if (key in inputs) {
valuesForLLM[key] = inputs[key];
delete valuesForPrompt[key];
}
}
const promptValue = await this.llmChain.prompt.formatPromptValue(valuesForPrompt);
const message = await llm.predictMessages(
promptValue.toChatMessages(),
valuesForLLM,
callbackManager
);
console.log('message', message);
return parseOutput(message);
}
}
module.exports = FunctionsAgent;

View file

@ -0,0 +1,35 @@
const { initializeAgentExecutorWithOptions } = require('langchain/agents');
const { BufferMemory, ChatMessageHistory } = require('langchain/memory');
const initializeFunctionsAgent = async ({
tools,
model,
pastMessages,
// currentDateString,
...rest
}) => {
const memory = new BufferMemory({
chatHistory: new ChatMessageHistory(pastMessages),
memoryKey: 'chat_history',
humanPrefix: 'User',
aiPrefix: 'Assistant',
inputKey: 'input',
outputKey: 'output',
returnMessages: true,
});
return await initializeAgentExecutorWithOptions(
tools,
model,
{
agentType: "openai-functions",
memory,
...rest,
}
);
};
module.exports = initializeFunctionsAgent;

View file

@ -0,0 +1,7 @@
const initializeCustomAgent = require('./CustomAgent/initializeCustomAgent');
const initializeFunctionsAgent = require('./Functions/initializeFunctionsAgent');
module.exports = {
initializeCustomAgent,
initializeFunctionsAgent
};

View file

@ -1,80 +0,0 @@
require('dotenv').config();
const { KeyvFile } = require('keyv-file');
const askBing = async ({
text,
parentMessageId,
conversationId,
jailbreak,
jailbreakConversationId,
context,
systemMessage,
conversationSignature,
clientId,
invocationId,
toneStyle,
token,
onProgress
}) => {
const { BingAIClient } = await import('@waylaidwanderer/chatgpt-api');
const store = {
store: new KeyvFile({ filename: './data/cache.json' })
};
const bingAIClient = new BingAIClient({
// "_U" cookie from bing.com
// userToken:
// process.env.BINGAI_TOKEN == 'user_provided' ? token : process.env.BINGAI_TOKEN ?? null,
// If the above doesn't work, provide all your cookies as a string instead
cookies: process.env.BINGAI_TOKEN == 'user_provided' ? token : process.env.BINGAI_TOKEN ?? null,
debug: false,
cache: store,
host: process.env.BINGAI_HOST || null,
proxy: process.env.PROXY || null
});
let options = {};
if (jailbreakConversationId == 'false') {
jailbreakConversationId = false;
}
if (jailbreak)
options = {
jailbreakConversationId: jailbreakConversationId || jailbreak,
context,
systemMessage,
parentMessageId,
toneStyle,
onProgress
};
else {
options = {
conversationId,
context,
systemMessage,
parentMessageId,
toneStyle,
onProgress
};
// don't give those parameters for new conversation
// for new conversation, conversationSignature always is null
if (conversationSignature) {
options.conversationSignature = conversationSignature;
options.clientId = clientId;
options.invocationId = invocationId;
}
}
console.log('bing options', options);
const res = await bingAIClient.sendMessage(text, options);
return res;
// for reference:
// https://github.com/waylaidwanderer/node-chatgpt-api/blob/main/demos/use-bing-client.js
};
module.exports = { askBing };

View file

@ -1,50 +0,0 @@
require('dotenv').config();
const { KeyvFile } = require('keyv-file');
const browserClient = async ({
text,
parentMessageId,
conversationId,
model,
token,
onProgress,
onEventMessage,
abortController,
userId
}) => {
const { ChatGPTBrowserClient } = await import('@waylaidwanderer/chatgpt-api');
const store = {
store: new KeyvFile({ filename: './data/cache.json' })
};
const clientOptions = {
// Warning: This will expose your access token to a third party. Consider the risks before using this.
reverseProxyUrl:
process.env.CHATGPT_REVERSE_PROXY || 'https://ai.fakeopen.com/api/conversation',
// Access token from https://chat.openai.com/api/auth/session
accessToken:
process.env.CHATGPT_TOKEN == 'user_provided' ? token : process.env.CHATGPT_TOKEN ?? null,
model: model,
debug: false,
proxy: process.env.PROXY || null,
user: userId
};
const client = new ChatGPTBrowserClient(clientOptions, store);
let options = { onProgress, onEventMessage, abortController };
if (!!parentMessageId && !!conversationId) {
options = { ...options, parentMessageId, conversationId };
}
console.log('gptBrowser clientOptions', clientOptions);
if (parentMessageId === '00000000-0000-0000-0000-000000000000') {
delete options.conversationId;
}
const res = await client.sendMessage(text, options);
return res;
};
module.exports = { browserClient };

View file

@ -1,106 +0,0 @@
require('dotenv').config();
const { KeyvFile } = require('keyv-file');
const { genAzureChatCompletion } = require('../../utils/genAzureEndpoints');
const tiktoken = require('@dqbd/tiktoken');
const tiktokenModels = require('../../utils/tiktokenModels');
const encoding_for_model = tiktoken.encoding_for_model;
const askClient = async ({
text,
parentMessageId,
conversationId,
model,
oaiApiKey,
chatGptLabel,
promptPrefix,
temperature,
top_p,
presence_penalty,
frequency_penalty,
onProgress,
abortController,
userId
}) => {
const { ChatGPTClient } = await import('@waylaidwanderer/chatgpt-api');
const store = {
store: new KeyvFile({ filename: './data/cache.json' })
};
const azure = process.env.AZURE_OPENAI_API_KEY ? true : false;
let promptText = 'You are ChatGPT, a large language model trained by OpenAI.';
if (promptPrefix) {
promptText = promptPrefix;
}
const maxTokensMap = {
'gpt-4': 8191,
'gpt-4-0613': 8191,
'gpt-4-32k': 32767,
'gpt-4-32k-0613': 32767,
'gpt-3.5-turbo': 4095,
'gpt-3.5-turbo-0613': 4095,
'gpt-3.5-turbo-0301': 4095,
'gpt-3.5-turbo-16k': 15999,
};
const maxContextTokens = maxTokensMap[model] ?? 4095; // 1 less than maximum
const clientOptions = {
reverseProxyUrl: process.env.OPENAI_REVERSE_PROXY || null,
azure,
maxContextTokens,
modelOptions: {
model,
temperature,
top_p,
presence_penalty,
frequency_penalty
},
chatGptLabel,
promptPrefix,
proxy: process.env.PROXY || null
// debug: true
};
let apiKey = oaiApiKey ? oaiApiKey : process.env.OPENAI_API_KEY || null;
if (azure) {
apiKey = oaiApiKey ? oaiApiKey : process.env.AZURE_OPENAI_API_KEY || null;
clientOptions.reverseProxyUrl = genAzureChatCompletion({
azureOpenAIApiInstanceName: process.env.AZURE_OPENAI_API_INSTANCE_NAME,
azureOpenAIApiDeploymentName: process.env.AZURE_OPENAI_API_DEPLOYMENT_NAME,
azureOpenAIApiVersion: process.env.AZURE_OPENAI_API_VERSION
});
}
const client = new ChatGPTClient(apiKey, clientOptions, store);
const options = {
onProgress,
abortController,
...(parentMessageId && conversationId ? { parentMessageId, conversationId } : {})
};
let usage = {};
let enc = null;
try {
enc = encoding_for_model(tiktokenModels.has(model) ? model : 'gpt-3.5-turbo');
usage.prompt_tokens = (enc.encode(promptText)).length + (enc.encode(text)).length;
} catch (e) {
console.log('Error encoding prompt text', e);
}
const res = await client.sendMessage(text, { ...options, userId });
try {
usage.completion_tokens = (enc.encode(res.response)).length;
enc.free();
usage.total_tokens = usage.prompt_tokens + usage.completion_tokens;
res.usage = usage;
} catch (e) {
console.log('Error encoding response text', e);
}
return res;
};
module.exports = { askClient };

15
api/app/clients/index.js Normal file
View file

@ -0,0 +1,15 @@
const ChatGPTClient = require('./ChatGPTClient');
const OpenAIClient = require('./OpenAIClient');
const PluginsClient = require('./PluginsClient');
const GoogleClient = require('./GoogleClient');
const TextStream = require('./TextStream');
const toolUtils = require('./tools/util');
module.exports = {
ChatGPTClient,
OpenAIClient,
PluginsClient,
GoogleClient,
TextStream,
...toolUtils
};

View file

@ -0,0 +1,6 @@
module.exports = {
instructions: `Remember, all your responses MUST be in the format described. Do not respond unless it's in the format described, using the structure of Action, Action Input, etc.`,
errorInstructions: `\nYou encountered an error in attempting a response. The user is not aware of the error so you shouldn't mention it.\nReview the actions taken carefully in case there is a partial or complete answer within them.\nError Message:`,
imageInstructions: 'You must include the exact image paths from above, formatted in Markdown syntax: ![alt-text](URL)',
completionInstructions: `Instructions:\nYou are ChatGPT, a large language model trained by OpenAI. Respond conversationally.\nCurrent date:`,
};

View file

@ -0,0 +1,24 @@
const { PromptTemplate } = require('langchain/prompts');
const refinePromptTemplate = `Your job is to produce a final summary of the following conversation.
We have provided an existing summary up to a certain point: "{existing_answer}"
We have the opportunity to refine the existing summary
(only if needed) with some more context below.
------------
"{text}"
------------
Given the new context, refine the original summary of the conversation.
Do note who is speaking in the conversation to give proper context.
If the context isn't useful, return the original summary.
REFINED CONVERSATION SUMMARY:`;
const refinePrompt = new PromptTemplate({
template: refinePromptTemplate,
inputVariables: ["existing_answer", "text"],
});
module.exports = {
refinePrompt,
};

View file

@ -0,0 +1,371 @@
const { initializeFakeClient } = require('./FakeClient');
jest.mock('../../../lib/db/connectDb');
jest.mock('../../../models', () => {
return function () {
return {
save: jest.fn(),
deleteConvos: jest.fn(),
getConvo: jest.fn(),
getMessages: jest.fn(),
saveMessage: jest.fn(),
updateMessage: jest.fn(),
saveConvo: jest.fn()
};
};
});
jest.mock('langchain/text_splitter', () => {
return {
RecursiveCharacterTextSplitter: jest.fn().mockImplementation(() => {
return { createDocuments: jest.fn().mockResolvedValue([]) };
}),
};
});
jest.mock('langchain/chat_models/openai', () => {
return {
ChatOpenAI: jest.fn().mockImplementation(() => {
return {};
}),
};
});
jest.mock('langchain/chains', () => {
return {
loadSummarizationChain: jest.fn().mockReturnValue({
call: jest.fn().mockResolvedValue({ output_text: 'Refined answer' }),
}),
};
});
let parentMessageId;
let conversationId;
const fakeMessages = [];
const userMessage = 'Hello, ChatGPT!';
const apiKey = 'fake-api-key';
describe('BaseClient', () => {
let TestClient;
const options = {
// debug: true,
modelOptions: {
model: 'gpt-3.5-turbo',
temperature: 0,
}
};
beforeEach(() => {
TestClient = initializeFakeClient(apiKey, options, fakeMessages);
});
test('returns the input messages without instructions when addInstructions() is called with empty instructions', () => {
const messages = [
{ content: 'Hello' },
{ content: 'How are you?' },
{ content: 'Goodbye' },
];
const instructions = '';
const result = TestClient.addInstructions(messages, instructions);
expect(result).toEqual(messages);
});
test('returns the input messages with instructions properly added when addInstructions() is called with non-empty instructions', () => {
const messages = [
{ content: 'Hello' },
{ content: 'How are you?' },
{ content: 'Goodbye' },
];
const instructions = { content: 'Please respond to the question.' };
const result = TestClient.addInstructions(messages, instructions);
const expected = [
{ content: 'Hello' },
{ content: 'How are you?' },
{ content: 'Please respond to the question.' },
{ content: 'Goodbye' },
];
expect(result).toEqual(expected);
});
test('concats messages correctly in concatenateMessages()', () => {
const messages = [
{ name: 'User', content: 'Hello' },
{ name: 'Assistant', content: 'How can I help you?' },
{ name: 'User', content: 'I have a question.' },
];
const result = TestClient.concatenateMessages(messages);
const expected = `User:\nHello\n\nAssistant:\nHow can I help you?\n\nUser:\nI have a question.\n\n`;
expect(result).toBe(expected);
});
test('refines messages correctly in refineMessages()', async () => {
const messagesToRefine = [
{ role: 'user', content: 'Hello', tokenCount: 10 },
{ role: 'assistant', content: 'How can I help you?', tokenCount: 20 }
];
const remainingContextTokens = 100;
const expectedRefinedMessage = {
role: 'assistant',
content: 'Refined answer',
tokenCount: 14 // 'Refined answer'.length
};
const result = await TestClient.refineMessages(messagesToRefine, remainingContextTokens);
expect(result).toEqual(expectedRefinedMessage);
});
test('gets messages within token limit (under limit) correctly in getMessagesWithinTokenLimit()', async () => {
TestClient.maxContextTokens = 100;
TestClient.shouldRefineContext = true;
TestClient.refineMessages = jest.fn().mockResolvedValue({
role: 'assistant',
content: 'Refined answer',
tokenCount: 30
});
const messages = [
{ role: 'user', content: 'Hello', tokenCount: 5 },
{ role: 'assistant', content: 'How can I help you?', tokenCount: 19 },
{ role: 'user', content: 'I have a question.', tokenCount: 18 },
];
const expectedContext = [
{ role: 'user', content: 'Hello', tokenCount: 5 }, // 'Hello'.length
{ role: 'assistant', content: 'How can I help you?', tokenCount: 19 },
{ role: 'user', content: 'I have a question.', tokenCount: 18 },
];
const expectedRemainingContextTokens = 58; // 100 - 5 - 19 - 18
const expectedMessagesToRefine = [];
const result = await TestClient.getMessagesWithinTokenLimit(messages);
expect(result.context).toEqual(expectedContext);
expect(result.remainingContextTokens).toBe(expectedRemainingContextTokens);
expect(result.messagesToRefine).toEqual(expectedMessagesToRefine);
});
test('gets messages within token limit (over limit) correctly in getMessagesWithinTokenLimit()', async () => {
TestClient.maxContextTokens = 50; // Set a lower limit
TestClient.shouldRefineContext = true;
TestClient.refineMessages = jest.fn().mockResolvedValue({
role: 'assistant',
content: 'Refined answer',
tokenCount: 4
});
const messages = [
{ role: 'user', content: 'I need a coffee, stat!', tokenCount: 30 },
{ role: 'assistant', content: 'Sure, I can help with that.', tokenCount: 30 },
{ role: 'user', content: 'Hello', tokenCount: 5 },
{ role: 'assistant', content: 'How can I help you?', tokenCount: 19 },
{ role: 'user', content: 'I have a question.', tokenCount: 18 },
];
const expectedContext = [
{ role: 'user', content: 'Hello', tokenCount: 5 },
{ role: 'assistant', content: 'How can I help you?', tokenCount: 19 },
{ role: 'user', content: 'I have a question.', tokenCount: 18 },
];
const expectedRemainingContextTokens = 8; // 50 - 18 - 19 - 5
const expectedMessagesToRefine = [
{ role: 'user', content: 'I need a coffee, stat!', tokenCount: 30 },
{ role: 'assistant', content: 'Sure, I can help with that.', tokenCount: 30 },
];
const result = await TestClient.getMessagesWithinTokenLimit(messages);
expect(result.context).toEqual(expectedContext);
expect(result.remainingContextTokens).toBe(expectedRemainingContextTokens);
expect(result.messagesToRefine).toEqual(expectedMessagesToRefine);
});
test('handles context strategy correctly in handleContextStrategy()', async () => {
TestClient.addInstructions = jest.fn().mockReturnValue([
{ content: 'Hello' },
{ content: 'How can I help you?' },
{ content: 'Please provide more details.' },
{ content: 'I can assist you with that.' }
]);
TestClient.getMessagesWithinTokenLimit = jest.fn().mockReturnValue({
context: [
{ content: 'How can I help you?' },
{ content: 'Please provide more details.' },
{ content: 'I can assist you with that.' }
],
remainingContextTokens: 80,
messagesToRefine: [
{ content: 'Hello' },
],
refineIndex: 3,
});
TestClient.refineMessages = jest.fn().mockResolvedValue({
role: 'assistant',
content: 'Refined answer',
tokenCount: 30
});
TestClient.getTokenCountForResponse = jest.fn().mockReturnValue(40);
const instructions = { content: 'Please provide more details.' };
const orderedMessages = [
{ content: 'Hello' },
{ content: 'How can I help you?' },
{ content: 'Please provide more details.' },
{ content: 'I can assist you with that.' }
];
const formattedMessages = [
{ content: 'Hello' },
{ content: 'How can I help you?' },
{ content: 'Please provide more details.' },
{ content: 'I can assist you with that.' }
];
const expectedResult = {
payload: [
{
content: 'Refined answer',
role: 'assistant',
tokenCount: 30
},
{ content: 'How can I help you?' },
{ content: 'Please provide more details.' },
{ content: 'I can assist you with that.' }
],
promptTokens: expect.any(Number),
tokenCountMap: {},
messages: expect.any(Array),
};
const result = await TestClient.handleContextStrategy({
instructions,
orderedMessages,
formattedMessages,
});
expect(result).toEqual(expectedResult);
});
describe('sendMessage', () => {
test('sendMessage should return a response message', async () => {
const expectedResult = expect.objectContaining({
sender: TestClient.sender,
text: expect.any(String),
isCreatedByUser: false,
messageId: expect.any(String),
parentMessageId: expect.any(String),
conversationId: expect.any(String)
});
const response = await TestClient.sendMessage(userMessage);
parentMessageId = response.messageId;
conversationId = response.conversationId;
expect(response).toEqual(expectedResult);
});
test('sendMessage should work with provided conversationId and parentMessageId', async () => {
const userMessage = 'Second message in the conversation';
const opts = {
conversationId,
parentMessageId,
getIds: jest.fn(),
onStart: jest.fn()
};
const expectedResult = expect.objectContaining({
sender: TestClient.sender,
text: expect.any(String),
isCreatedByUser: false,
messageId: expect.any(String),
parentMessageId: expect.any(String),
conversationId: opts.conversationId
});
const response = await TestClient.sendMessage(userMessage, opts);
parentMessageId = response.messageId;
expect(response.conversationId).toEqual(conversationId);
expect(response).toEqual(expectedResult);
expect(opts.getIds).toHaveBeenCalled();
expect(opts.onStart).toHaveBeenCalled();
expect(TestClient.getBuildMessagesOptions).toHaveBeenCalled();
expect(TestClient.getSaveOptions).toHaveBeenCalled();
});
test('should return chat history', async () => {
const chatMessages = await TestClient.loadHistory(conversationId, parentMessageId);
expect(TestClient.currentMessages).toHaveLength(4);
expect(chatMessages[0].text).toEqual(userMessage);
});
test('setOptions is called with the correct arguments', async () => {
TestClient.setOptions = jest.fn();
const opts = { conversationId: '123', parentMessageId: '456' };
await TestClient.sendMessage('Hello, world!', opts);
expect(TestClient.setOptions).toHaveBeenCalledWith(opts);
TestClient.setOptions.mockClear();
});
test('loadHistory is called with the correct arguments', async () => {
const opts = { conversationId: '123', parentMessageId: '456' };
await TestClient.sendMessage('Hello, world!', opts);
expect(TestClient.loadHistory).toHaveBeenCalledWith(opts.conversationId, opts.parentMessageId);
});
test('getIds is called with the correct arguments', async () => {
const getIds = jest.fn();
const opts = { getIds };
const response = await TestClient.sendMessage('Hello, world!', opts);
expect(getIds).toHaveBeenCalledWith({
userMessage: expect.objectContaining({ text: 'Hello, world!' }),
conversationId: response.conversationId,
responseMessageId: response.messageId
});
});
test('onStart is called with the correct arguments', async () => {
const onStart = jest.fn();
const opts = { onStart };
await TestClient.sendMessage('Hello, world!', opts);
expect(onStart).toHaveBeenCalledWith(expect.objectContaining({ text: 'Hello, world!' }));
});
test('saveMessageToDatabase is called with the correct arguments', async () => {
const saveOptions = TestClient.getSaveOptions();
const user = {}; // Mock user
const opts = { user };
await TestClient.sendMessage('Hello, world!', opts);
expect(TestClient.saveMessageToDatabase).toHaveBeenCalledWith(
expect.objectContaining({
sender: expect.any(String),
text: expect.any(String),
isCreatedByUser: expect.any(Boolean),
messageId: expect.any(String),
parentMessageId: expect.any(String),
conversationId: expect.any(String)
}),
saveOptions,
user
);
});
test('sendCompletion is called with the correct arguments', async () => {
const payload = {}; // Mock payload
TestClient.buildMessages.mockReturnValue({ prompt: payload, tokenCountMap: null });
const opts = {};
await TestClient.sendMessage('Hello, world!', opts);
expect(TestClient.sendCompletion).toHaveBeenCalledWith(payload, opts);
});
test('getTokenCountForResponse is called with the correct arguments', async () => {
const tokenCountMap = {}; // Mock tokenCountMap
TestClient.buildMessages.mockReturnValue({ prompt: [], tokenCountMap });
TestClient.getTokenCountForResponse = jest.fn();
const response = await TestClient.sendMessage('Hello, world!', {});
expect(TestClient.getTokenCountForResponse).toHaveBeenCalledWith(response);
});
test('returns an object with the correct shape', async () => {
const response = await TestClient.sendMessage('Hello, world!', {});
expect(response).toEqual(expect.objectContaining({
sender: expect.any(String),
text: expect.any(String),
isCreatedByUser: expect.any(Boolean),
messageId: expect.any(String),
parentMessageId: expect.any(String),
conversationId: expect.any(String)
}));
});
});
});

View file

@ -0,0 +1,185 @@
const crypto = require('crypto');
const BaseClient = require('../BaseClient');
const { maxTokensMap } = require('../../../utils');
class FakeClient extends BaseClient {
constructor(apiKey, options = {}) {
super(apiKey, options);
this.sender = 'AI Assistant';
this.setOptions(options);
}
setOptions(options) {
if (this.options && !this.options.replaceOptions) {
this.options.modelOptions = {
...this.options.modelOptions,
...options.modelOptions,
};
delete options.modelOptions;
this.options = {
...this.options,
...options,
};
} else {
this.options = options;
}
if (this.options.openaiApiKey) {
this.apiKey = this.options.openaiApiKey;
}
const modelOptions = this.options.modelOptions || {};
if (!this.modelOptions) {
this.modelOptions = {
...modelOptions,
model: modelOptions.model || 'gpt-3.5-turbo',
temperature: typeof modelOptions.temperature === 'undefined' ? 0.8 : modelOptions.temperature,
top_p: typeof modelOptions.top_p === 'undefined' ? 1 : modelOptions.top_p,
presence_penalty: typeof modelOptions.presence_penalty === 'undefined' ? 1 : modelOptions.presence_penalty,
stop: modelOptions.stop,
};
}
this.maxContextTokens = maxTokensMap[this.modelOptions.model] ?? 4097;
}
getCompletion() {}
buildMessages() {}
getTokenCount(str) {
return str.length;
}
getTokenCountForMessage(message) {
return message?.content?.length || message.length;
}
}
const initializeFakeClient = (apiKey, options, fakeMessages) => {
let TestClient = new FakeClient(apiKey);
TestClient.options = options;
TestClient.abortController = { abort: jest.fn() };
TestClient.saveMessageToDatabase = jest.fn();
TestClient.loadHistory = jest
.fn()
.mockImplementation((conversationId, parentMessageId = null) => {
if (!conversationId) {
TestClient.currentMessages = [];
return Promise.resolve([]);
}
const orderedMessages = TestClient.constructor.getMessagesForConversation(
fakeMessages,
parentMessageId
);
TestClient.currentMessages = orderedMessages;
return Promise.resolve(orderedMessages);
});
TestClient.getSaveOptions = jest.fn().mockImplementation(() => {
return {};
});
TestClient.getBuildMessagesOptions = jest.fn().mockImplementation(() => {
return {};
});
TestClient.sendCompletion = jest.fn(async () => {
return 'Mock response text';
});
TestClient.sendMessage = jest.fn().mockImplementation(async (message, opts = {}) => {
if (opts && typeof opts === 'object') {
TestClient.setOptions(opts);
}
const user = opts.user || null;
const conversationId = opts.conversationId || crypto.randomUUID();
const parentMessageId = opts.parentMessageId || '00000000-0000-0000-0000-000000000000';
const userMessageId = opts.overrideParentMessageId || crypto.randomUUID();
const saveOptions = TestClient.getSaveOptions();
this.pastMessages = await TestClient.loadHistory(
conversationId,
TestClient.options?.parentMessageId
);
const userMessage = {
text: message,
sender: TestClient.sender,
isCreatedByUser: true,
messageId: userMessageId,
parentMessageId,
conversationId
};
const response = {
sender: TestClient.sender,
text: 'Hello, User!',
isCreatedByUser: false,
messageId: crypto.randomUUID(),
parentMessageId: userMessage.messageId,
conversationId
};
fakeMessages.push(userMessage);
fakeMessages.push(response);
if (typeof opts.getIds === 'function') {
opts.getIds({
userMessage,
conversationId,
responseMessageId: response.messageId
});
}
if (typeof opts.onStart === 'function') {
opts.onStart(userMessage);
}
let { prompt: payload, tokenCountMap } = await TestClient.buildMessages(
this.currentMessages,
userMessage.messageId,
TestClient.getBuildMessagesOptions(opts),
);
if (tokenCountMap) {
payload = payload.map((message, i) => {
const { tokenCount, ...messageWithoutTokenCount } = message;
// userMessage is always the last one in the payload
if (i === payload.length - 1) {
userMessage.tokenCount = message.tokenCount;
console.debug(`Token count for user message: ${tokenCount}`, `Instruction Tokens: ${tokenCountMap.instructions || 'N/A'}`);
}
return messageWithoutTokenCount;
});
TestClient.handleTokenCountMap(tokenCountMap);
}
await TestClient.saveMessageToDatabase(userMessage, saveOptions, user);
response.text = await TestClient.sendCompletion(payload, opts);
if (tokenCountMap && TestClient.getTokenCountForResponse) {
response.tokenCount = TestClient.getTokenCountForResponse(response);
}
await TestClient.saveMessageToDatabase(response, saveOptions, user);
return response;
});
TestClient.buildMessages = jest.fn(async (messages, parentMessageId) => {
const orderedMessages = TestClient.constructor.getMessagesForConversation(messages, parentMessageId);
const formattedMessages = orderedMessages.map((message) => {
let { role: _role, sender, text } = message;
const role = _role ?? sender;
const content = text ?? '';
return {
role: role?.toLowerCase() === 'user' ? 'user' : 'assistant',
content,
};
});
return {
prompt: formattedMessages,
tokenCountMap: null, // Simplified for the mock
};
});
return TestClient;
}
module.exports = { FakeClient, initializeFakeClient };

View file

@ -0,0 +1,160 @@
const OpenAIClient = require('../OpenAIClient');
describe('OpenAIClient', () => {
let client;
const model = 'gpt-4';
const parentMessageId = '1';
const messages = [
{ role: 'user', sender: 'User', text: 'Hello', messageId: parentMessageId},
{ role: 'assistant', sender: 'Assistant', text: 'Hi', messageId: '2' },
];
beforeEach(() => {
const options = {
// debug: true,
openaiApiKey: 'new-api-key',
modelOptions: {
model,
temperature: 0.7,
},
};
client = new OpenAIClient('test-api-key', options);
client.refineMessages = jest.fn().mockResolvedValue({
role: 'assistant',
content: 'Refined answer',
tokenCount: 30
});
});
describe('setOptions', () => {
it('should set the options correctly', () => {
expect(client.apiKey).toBe('new-api-key');
expect(client.modelOptions.model).toBe(model);
expect(client.modelOptions.temperature).toBe(0.7);
});
});
describe('freeAndResetEncoder', () => {
it('should reset the encoder', () => {
client.freeAndResetEncoder();
expect(client.gptEncoder).toBeDefined();
});
});
describe('getTokenCount', () => {
it('should return the correct token count', () => {
const count = client.getTokenCount('Hello, world!');
expect(count).toBeGreaterThan(0);
});
it('should reset the encoder and count when count reaches 25', () => {
const freeAndResetEncoderSpy = jest.spyOn(client, 'freeAndResetEncoder');
// Call getTokenCount 25 times
for (let i = 0; i < 25; i++) {
client.getTokenCount('test text');
}
expect(freeAndResetEncoderSpy).toHaveBeenCalled();
});
it('should not reset the encoder and count when count is less than 25', () => {
const freeAndResetEncoderSpy = jest.spyOn(client, 'freeAndResetEncoder');
// Call getTokenCount 24 times
for (let i = 0; i < 24; i++) {
client.getTokenCount('test text');
}
expect(freeAndResetEncoderSpy).not.toHaveBeenCalled();
});
it('should handle errors and reset the encoder', () => {
const freeAndResetEncoderSpy = jest.spyOn(client, 'freeAndResetEncoder');
client.gptEncoder.encode = jest.fn().mockImplementation(() => {
throw new Error('Test error');
});
client.getTokenCount('test text');
expect(freeAndResetEncoderSpy).toHaveBeenCalled();
});
});
describe('getSaveOptions', () => {
it('should return the correct save options', () => {
const options = client.getSaveOptions();
expect(options).toHaveProperty('chatGptLabel');
expect(options).toHaveProperty('promptPrefix');
});
});
describe('getBuildMessagesOptions', () => {
it('should return the correct build messages options', () => {
const options = client.getBuildMessagesOptions({ promptPrefix: 'Hello' });
expect(options).toHaveProperty('isChatCompletion');
expect(options).toHaveProperty('promptPrefix');
expect(options.promptPrefix).toBe('Hello');
});
});
describe('buildMessages', () => {
it('should build messages correctly for chat completion', async () => {
const result = await client.buildMessages(messages, parentMessageId, { isChatCompletion: true });
expect(result).toHaveProperty('prompt');
});
it('should build messages correctly for non-chat completion', async () => {
const result = await client.buildMessages(messages, parentMessageId, { isChatCompletion: false });
expect(result).toHaveProperty('prompt');
});
it('should build messages correctly with a promptPrefix', async () => {
const result = await client.buildMessages(messages, parentMessageId, { isChatCompletion: true, promptPrefix: 'Test Prefix' });
expect(result).toHaveProperty('prompt');
const instructions = result.prompt.find(item => item.name === 'instructions');
expect(instructions).toBeDefined();
expect(instructions.content).toContain('Test Prefix');
});
it('should handle context strategy correctly', async () => {
client.contextStrategy = 'refine';
const result = await client.buildMessages(messages, parentMessageId, { isChatCompletion: true });
expect(result).toHaveProperty('prompt');
expect(result).toHaveProperty('tokenCountMap');
});
it('should assign name property for user messages when options.name is set', async () => {
client.options.name = 'Test User';
const result = await client.buildMessages(messages, parentMessageId, { isChatCompletion: true });
const hasUserWithName = result.prompt.some(item => item.role === 'user' && item.name === 'Test User');
expect(hasUserWithName).toBe(true);
});
it('should calculate tokenCount for each message when contextStrategy is set', async () => {
client.contextStrategy = 'refine';
const result = await client.buildMessages(messages, parentMessageId, { isChatCompletion: true });
const hasUserWithTokenCount = result.prompt.some(item => item.role === 'user' && item.tokenCount > 0);
expect(hasUserWithTokenCount).toBe(true);
});
it('should handle promptPrefix from options when promptPrefix argument is not provided', async () => {
client.options.promptPrefix = 'Test Prefix from options';
const result = await client.buildMessages(messages, parentMessageId, { isChatCompletion: true });
const instructions = result.prompt.find(item => item.name === 'instructions');
expect(instructions.content).toContain('Test Prefix from options');
});
it('should handle case when neither promptPrefix argument nor options.promptPrefix is set', async () => {
const result = await client.buildMessages(messages, parentMessageId, { isChatCompletion: true });
const instructions = result.prompt.find(item => item.name === 'instructions');
expect(instructions).toBeUndefined();
});
it('should handle case when getMessagesForConversation returns null or an empty array', async () => {
const messages = [];
const result = await client.buildMessages(messages, parentMessageId, { isChatCompletion: true });
expect(result.prompt).toEqual([]);
});
});
});

View file

@ -1,7 +1,25 @@
/*
This is a test script to see how much memory is used by the client when encoding.
On my work machine, it was able to process 10,000 encoding requests / 48.686 seconds = approximately 205.4 RPS
I've significantly reduced the amount of encoding needed by saving token counts in the database, so these
numbers should only be hit with a large amount of concurrent users
It would take 103 concurrent users sending 1 message every 1 second to hit these numbers, which is rather unrealistic,
and at that point, out-sourcing the encoding to a separate server would be a better solution
Also, for scaling, could increase the rate at which the encoder resets; the trade-off is more resource usage on the server.
Initial memory usage: 25.93 megabytes
Peak memory usage: 55 megabytes
Final memory usage: 28.03 megabytes
Post-test (timeout of 15s): 21.91 megabytes
*/
require('dotenv').config();
const { OpenAIClient } = require('../');
function timeout(ms) {
return new Promise(resolve => setTimeout(resolve, ms));
}
const run = async () => {
const { ChatGPTClient } = await import('@waylaidwanderer/chatgpt-api');
const text = `
The standard Lorem Ipsum passage, used since the 1500s
@ -37,7 +55,6 @@ const run = async () => {
// Calculate initial percentage of memory used
const initialMemoryUsage = process.memoryUsage().heapUsed;
function printProgressBar(percentageUsed) {
const filledBlocks = Math.round(percentageUsed / 2); // Each block represents 2%
@ -46,20 +63,20 @@ const run = async () => {
console.log(progressBar);
}
const iterations = 16000;
const iterations = 10000;
console.time('loopTime');
// Trying to catch the error doesn't help; all future calls will immediately crash
for (let i = 0; i < iterations; i++) {
try {
console.log(`Iteration ${i}`);
const client = new ChatGPTClient(apiKey, clientOptions);
const client = new OpenAIClient(apiKey, clientOptions);
client.getTokenCount(text);
// const encoder = client.constructor.getTokenizer('cl100k_base');
// console.log(`Iteration ${i}: call encode()...`);
// encoder.encode(text, 'all');
// encoder.free();
const memoryUsageDuringLoop = process.memoryUsage().heapUsed;
const percentageUsed = memoryUsageDuringLoop / maxMemory * 100;
printProgressBar(percentageUsed);
@ -80,10 +97,23 @@ const run = async () => {
// const finalPercentageUsed = finalMemoryUsage / maxMemory * 100;
console.log(`Initial memory usage: ${initialMemoryUsage / 1024 / 1024} megabytes`);
console.log(`Final memory usage: ${finalMemoryUsage / 1024 / 1024} megabytes`);
setTimeout(() => {
const memoryUsageAfterTimeout = process.memoryUsage().heapUsed;
console.log(`Post timeout: ${memoryUsageAfterTimeout / 1024 / 1024} megabytes`);
} , 10000);
await timeout(15000);
const memoryUsageAfterTimeout = process.memoryUsage().heapUsed;
console.log(`Post timeout: ${memoryUsageAfterTimeout / 1024 / 1024} megabytes`);
}
run();
run();
process.on('uncaughtException', (err) => {
if (!err.message.includes('fetch failed')) {
console.error('There was an uncaught error:');
console.error(err);
}
if (err.message.includes('fetch failed')) {
console.log('fetch failed error caught');
// process.exit(0);
} else {
process.exit(1);
}
});

View file

@ -0,0 +1,148 @@
const { HumanChatMessage, AIChatMessage } = require('langchain/schema');
const PluginsClient = require('../PluginsClient');
const crypto = require('crypto');
jest.mock('../../../lib/db/connectDb');
jest.mock('../../../models/Conversation', () => {
return function () {
return {
save: jest.fn(),
deleteConvos: jest.fn()
};
};
});
describe('PluginsClient', () => {
let TestAgent;
let options = {
tools: [],
modelOptions: {
model: 'gpt-3.5-turbo',
temperature: 0,
max_tokens: 2
},
agentOptions: {
model: 'gpt-3.5-turbo'
}
};
let parentMessageId;
let conversationId;
const fakeMessages = [];
const userMessage = 'Hello, ChatGPT!';
const apiKey = 'fake-api-key';
beforeEach(() => {
TestAgent = new PluginsClient(apiKey, options);
TestAgent.loadHistory = jest
.fn()
.mockImplementation((conversationId, parentMessageId = null) => {
if (!conversationId) {
TestAgent.currentMessages = [];
return Promise.resolve([]);
}
const orderedMessages = TestAgent.constructor.getMessagesForConversation(
fakeMessages,
parentMessageId
);
const chatMessages = orderedMessages.map((msg) =>
msg?.isCreatedByUser || msg?.role?.toLowerCase() === 'user'
? new HumanChatMessage(msg.text)
: new AIChatMessage(msg.text)
);
TestAgent.currentMessages = orderedMessages;
return Promise.resolve(chatMessages);
});
TestAgent.sendMessage = jest.fn().mockImplementation(async (message, opts = {}) => {
if (opts && typeof opts === 'object') {
TestAgent.setOptions(opts);
}
const conversationId = opts.conversationId || crypto.randomUUID();
const parentMessageId = opts.parentMessageId || '00000000-0000-0000-0000-000000000000';
const userMessageId = opts.overrideParentMessageId || crypto.randomUUID();
this.pastMessages = await TestAgent.loadHistory(
conversationId,
TestAgent.options?.parentMessageId
);
const userMessage = {
text: message,
sender: 'ChatGPT',
isCreatedByUser: true,
messageId: userMessageId,
parentMessageId,
conversationId
};
const response = {
sender: 'ChatGPT',
text: 'Hello, User!',
isCreatedByUser: false,
messageId: crypto.randomUUID(),
parentMessageId: userMessage.messageId,
conversationId
};
fakeMessages.push(userMessage);
fakeMessages.push(response);
return response;
});
});
test('initializes PluginsClient without crashing', () => {
expect(TestAgent).toBeInstanceOf(PluginsClient);
});
test('check setOptions function', () => {
expect(TestAgent.agentIsGpt3).toBe(true);
});
describe('sendMessage', () => {
test('sendMessage should return a response message', async () => {
const expectedResult = expect.objectContaining({
sender: 'ChatGPT',
text: expect.any(String),
isCreatedByUser: false,
messageId: expect.any(String),
parentMessageId: expect.any(String),
conversationId: expect.any(String)
});
const response = await TestAgent.sendMessage(userMessage);
console.log(response);
parentMessageId = response.messageId;
conversationId = response.conversationId;
expect(response).toEqual(expectedResult);
});
test('sendMessage should work with provided conversationId and parentMessageId', async () => {
const userMessage = 'Second message in the conversation';
const opts = {
conversationId,
parentMessageId
};
const expectedResult = expect.objectContaining({
sender: 'ChatGPT',
text: expect.any(String),
isCreatedByUser: false,
messageId: expect.any(String),
parentMessageId: expect.any(String),
conversationId: opts.conversationId
});
const response = await TestAgent.sendMessage(userMessage, opts);
parentMessageId = response.messageId;
expect(response.conversationId).toEqual(conversationId);
expect(response).toEqual(expectedResult);
});
test('should return chat history', async () => {
const chatMessages = await TestAgent.loadHistory(conversationId, parentMessageId);
expect(TestAgent.currentMessages).toHaveLength(4);
expect(chatMessages[0].text).toEqual(userMessage);
});
});
});

View file

@ -0,0 +1,236 @@
const { Tool } = require('langchain/tools');
const yaml = require('js-yaml');
/*
export interface AIPluginToolParams {
name: string;
description: string;
apiSpec: string;
openaiSpec: string;
model: BaseLanguageModel;
}
export interface PathParameter {
name: string;
description: string;
}
export interface Info {
title: string;
description: string;
version: string;
}
export interface PathMethod {
summary: string;
operationId: string;
parameters?: PathParameter[];
}
interface ApiSpec {
openapi: string;
info: Info;
paths: { [key: string]: { [key: string]: PathMethod } };
}
*/
function isJson(str) {
try {
JSON.parse(str);
} catch (e) {
return false;
}
return true;
}
function convertJsonToYamlIfApplicable(spec) {
if (isJson(spec)) {
const jsonData = JSON.parse(spec);
return yaml.dump(jsonData);
}
return spec;
}
function extractShortVersion(openapiSpec) {
openapiSpec = convertJsonToYamlIfApplicable(openapiSpec);
try {
const fullApiSpec = yaml.load(openapiSpec);
const shortApiSpec = {
openapi: fullApiSpec.openapi,
info: fullApiSpec.info,
paths: {}
};
for (let path in fullApiSpec.paths) {
shortApiSpec.paths[path] = {};
for (let method in fullApiSpec.paths[path]) {
shortApiSpec.paths[path][method] = {
summary: fullApiSpec.paths[path][method].summary,
operationId: fullApiSpec.paths[path][method].operationId,
parameters: fullApiSpec.paths[path][method].parameters?.map((parameter) => ({
name: parameter.name,
description: parameter.description
}))
};
}
}
return yaml.dump(shortApiSpec);
} catch (e) {
console.log(e);
return '';
}
}
function printOperationDetails(operationId, openapiSpec) {
openapiSpec = convertJsonToYamlIfApplicable(openapiSpec);
let returnText = '';
try {
let doc = yaml.load(openapiSpec);
let servers = doc.servers;
let paths = doc.paths;
let components = doc.components;
for (let path in paths) {
for (let method in paths[path]) {
let operation = paths[path][method];
if (operation.operationId === operationId) {
returnText += `The API request to do for operationId "${operationId}" is:\n`;
returnText += `Method: ${method.toUpperCase()}\n`;
let url = servers[0].url + path;
returnText += `Path: ${url}\n`;
returnText += 'Parameters:\n';
if (operation.parameters) {
for (let param of operation.parameters) {
let required = param.required ? '' : ' (optional),';
returnText += `- ${param.name} (${param.in},${required} ${param.schema.type}): ${param.description}\n`;
}
} else {
returnText += ' None\n';
}
returnText += '\n';
let responseSchema = operation.responses['200'].content['application/json'].schema;
// Check if schema is a reference
if (responseSchema.$ref) {
// Extract schema name from reference
let schemaName = responseSchema.$ref.split('/').pop();
// Look up schema in components
responseSchema = components.schemas[schemaName];
}
returnText += 'Response schema:\n';
returnText += '- Type: ' + responseSchema.type + '\n';
returnText += '- Additional properties:\n';
returnText += ' - Type: ' + responseSchema.additionalProperties?.type + '\n';
if (responseSchema.additionalProperties?.properties) {
returnText += ' - Properties:\n';
for (let prop in responseSchema.additionalProperties.properties) {
returnText += ` - ${prop} (${responseSchema.additionalProperties.properties[prop].type}): Description not provided in OpenAPI spec\n`;
}
}
}
}
}
if (returnText === '') {
returnText += `No operation with operationId "${operationId}" found.`;
}
return returnText;
} catch (e) {
console.log(e);
return '';
}
}
class AIPluginTool extends Tool {
/*
private _name: string;
private _description: string;
apiSpec: string;
openaiSpec: string;
model: BaseLanguageModel;
*/
get name() {
return this._name;
}
get description() {
return this._description;
}
constructor(params) {
super();
this._name = params.name;
this._description = params.description;
this.apiSpec = params.apiSpec;
this.openaiSpec = params.openaiSpec;
this.model = params.model;
}
async _call(input) {
let date = new Date();
let fullDate = `Date: ${date.getDate()}/${
date.getMonth() + 1
}/${date.getFullYear()}, Time: ${date.getHours()}:${date.getMinutes()}:${date.getSeconds()}`;
const prompt = `${fullDate}\nQuestion: ${input} \n${this.apiSpec}.`;
console.log(prompt);
const gptResponse = await this.model.predict(prompt);
let operationId = gptResponse.match(/operationId: (.*)/)?.[1];
if (!operationId) {
return 'No operationId found in the response';
}
if (operationId == 'No API path found to answer the question') {
return 'No API path found to answer the question';
}
let openApiData = printOperationDetails(operationId, this.openaiSpec);
return openApiData;
}
static async fromPluginUrl(url, model) {
const aiPluginRes = await fetch(url, {});
if (!aiPluginRes.ok) {
throw new Error(`Failed to fetch plugin from ${url} with status ${aiPluginRes.status}`);
}
const aiPluginJson = await aiPluginRes.json();
const apiUrlRes = await fetch(aiPluginJson.api.url, {});
if (!apiUrlRes.ok) {
throw new Error(
`Failed to fetch API spec from ${aiPluginJson.api.url} with status ${apiUrlRes.status}`
);
}
const apiUrlJson = await apiUrlRes.text();
const shortApiSpec = extractShortVersion(apiUrlJson);
return new AIPluginTool({
name: aiPluginJson.name_for_model.toLowerCase(),
description: `A \`tool\` to learn the API documentation for ${aiPluginJson.name_for_model.toLowerCase()}, after which you can use 'http_request' to make the actual API call. Short description of how to use the API's results: ${aiPluginJson.description_for_model})`,
apiSpec: `
As an AI, your task is to identify the operationId of the relevant API path based on the condensed OpenAPI specifications provided.
Please note:
1. Do not imagine URLs. Only use the information provided in the condensed OpenAPI specifications.
2. Do not guess the operationId. Identify it strictly based on the API paths and their descriptions.
Your output should only include:
- operationId: The operationId of the relevant API path
If you cannot find a suitable API path based on the OpenAPI specifications, please answer only "operationId: No API path found to answer the question".
Now, based on the question above and the condensed OpenAPI specifications given below, identify the operationId:
\`\`\`
${shortApiSpec}
\`\`\`
`,
openaiSpec: apiUrlJson,
model: model
});
}
}
module.exports = AIPluginTool;

View file

@ -0,0 +1,114 @@
// From https://platform.openai.com/docs/api-reference/images/create
// To use this tool, you must pass in a configured OpenAIApi object.
const fs = require('fs');
const { Configuration, OpenAIApi } = require('openai');
// const { genAzureEndpoint } = require('../../../utils/genAzureEndpoints');
const { Tool } = require('langchain/tools');
const saveImageFromUrl = require('./saveImageFromUrl');
const path = require('path');
class OpenAICreateImage extends Tool {
constructor(fields = {}) {
super();
let apiKey = fields.DALLE_API_KEY || this.getApiKey();
// let azureKey = fields.AZURE_API_KEY || process.env.AZURE_API_KEY;
let config = { apiKey };
// if (azureKey) {
// apiKey = azureKey;
// const azureConfig = {
// apiKey,
// azureOpenAIApiInstanceName: process.env.AZURE_OPENAI_API_INSTANCE_NAME || fields.azureOpenAIApiInstanceName,
// azureOpenAIApiDeploymentName: process.env.AZURE_OPENAI_API_DEPLOYMENT_NAME || fields.azureOpenAIApiDeploymentName,
// azureOpenAIApiVersion: process.env.AZURE_OPENAI_API_VERSION || fields.azureOpenAIApiVersion
// };
// config = {
// apiKey,
// basePath: genAzureEndpoint({
// ...azureConfig,
// }),
// baseOptions: {
// headers: { 'api-key': apiKey },
// params: {
// 'api-version': azureConfig.azureOpenAIApiVersion // this might change. I got the current value from the sample code at https://oai.azure.com/portal/chat
// }
// }
// };
// }
this.openaiApi = new OpenAIApi(new Configuration(config));
this.name = 'dall-e';
this.description = `You can generate images with 'dall-e'. This tool is exclusively for visual content.
Guidelines:
- Visually describe the moods, details, structures, styles, and/or proportions of the image. Remember, the focus is on visual attributes.
- Craft your input by "showing" and not "telling" the imagery. Think in terms of what you'd want to see in a photograph or a painting.
- It's best to follow this format for image creation. Come up with the optional inputs yourself if none are given:
"Subject: [subject], Style: [style], Color: [color], Details: [details], Emotion: [emotion]"
- Generate images only once per human query unless explicitly requested by the user`;
}
getApiKey() {
const apiKey = process.env.DALLE_API_KEY || '';
if (!apiKey) {
throw new Error('Missing DALLE_API_KEY environment variable.');
}
return apiKey;
}
replaceUnwantedChars(inputString) {
return inputString.replace(/\r\n|\r|\n/g, ' ').replace('"', '').trim();
}
getMarkdownImageUrl(imageName) {
const imageUrl = path.join(this.relativeImageUrl, imageName).replace(/\\/g, '/').replace('public/', '');
return `![generated image](/${imageUrl})`;
}
async _call(input) {
const resp = await this.openaiApi.createImage({
prompt: this.replaceUnwantedChars(input),
// TODO: Future idea -- could we ask an LLM to extract these arguments from an input that might contain them?
n: 1,
// size: '1024x1024'
size: '512x512'
});
const theImageUrl = resp.data.data[0].url;
if (!theImageUrl) {
throw new Error(`No image URL returned from OpenAI API.`);
}
const regex = /img-[\w\d]+.png/;
const match = theImageUrl.match(regex);
let imageName = '1.png';
if (match) {
imageName = match[0];
console.log(imageName); // Output: img-lgCf7ppcbhqQrz6a5ear6FOb.png
} else {
console.log('No image name found in the string.');
}
this.outputPath = path.resolve(__dirname, '..', '..', '..', '..', 'client', 'public', 'images');
const appRoot = path.resolve(__dirname, '..', '..', '..', '..', 'client');
this.relativeImageUrl = path.relative(appRoot, this.outputPath);
// Check if directory exists, if not create it
if (!fs.existsSync(this.outputPath)) {
fs.mkdirSync(this.outputPath, { recursive: true });
}
try {
await saveImageFromUrl(theImageUrl, this.outputPath, imageName);
this.result = this.getMarkdownImageUrl(imageName);
} catch (error) {
console.error('Error while saving the image:', error);
this.result = theImageUrl;
}
return this.result;
}
}
module.exports = OpenAICreateImage;

View file

@ -0,0 +1,117 @@
const { Tool } = require('langchain/tools');
const { google } = require('googleapis');
/**
* Represents a tool that allows an agent to use the Google Custom Search API.
* @extends Tool
*/
class GoogleSearchAPI extends Tool {
constructor(fields = {}) {
super();
this.cx = fields.GOOGLE_CSE_ID || this.getCx();
this.apiKey = fields.GOOGLE_API_KEY || this.getApiKey();
this.customSearch = undefined;
}
/**
* The name of the tool.
* @type {string}
*/
name = 'google';
/**
* A description for the agent to use
* @type {string}
*/
description = `Use the 'google' tool to retrieve internet search results relevant to your input. The results will return links and snippets of text from the webpages`;
getCx() {
const cx = process.env.GOOGLE_CSE_ID || '';
if (!cx) {
throw new Error('Missing GOOGLE_CSE_ID environment variable.');
}
return cx;
}
getApiKey() {
const apiKey = process.env.GOOGLE_API_KEY || '';
if (!apiKey) {
throw new Error('Missing GOOGLE_API_KEY environment variable.');
}
return apiKey;
}
getCustomSearch() {
if (!this.customSearch) {
const version = 'v1';
this.customSearch = google.customsearch(version);
}
return this.customSearch;
}
resultsToReadableFormat(results) {
let output = 'Results:\n';
results.forEach((resultObj, index) => {
output += `Title: ${resultObj.title}\n`;
output += `Link: ${resultObj.link}\n`;
if (resultObj.snippet) {
output += `Snippet: ${resultObj.snippet}\n`;
}
if (index < results.length - 1) {
output += '\n';
}
});
return output;
}
/**
* Calls the tool with the provided input and returns a promise that resolves with a response from the Google Custom Search API.
* @param {string} input - The input to provide to the API.
* @returns {Promise<String>} A promise that resolves with a response from the Google Custom Search API.
*/
async _call(input) {
try {
const metadataResults = [];
const response = await this.getCustomSearch().cse.list({
q: input,
cx: this.cx,
auth: this.apiKey,
num: 5 // Limit the number of results to 5
});
// return response.data;
// console.log(response.data);
if (!response.data.items || response.data.items.length === 0) {
return this.resultsToReadableFormat([
{ title: 'No good Google Search Result was found', link: '' }
]);
}
// const results = response.items.slice(0, numResults);
const results = response.data.items;
for (const result of results) {
const metadataResult = {
title: result.title || '',
link: result.link || ''
};
if (result.snippet) {
metadataResult.snippet = result.snippet;
}
metadataResults.push(metadataResult);
}
return this.resultsToReadableFormat(metadataResults);
} catch (error) {
console.log(`Error searching Google: ${error}`);
// throw error;
return 'There was an error searching Google.';
}
}
}
module.exports = GoogleSearchAPI;

View file

@ -0,0 +1,107 @@
const { Tool } = require('langchain/tools');
// class RequestsGetTool extends Tool {
// constructor(headers = {}, { maxOutputLength } = {}) {
// super();
// this.name = 'requests_get';
// this.headers = headers;
// this.maxOutputLength = maxOutputLength || 2000;
// this.description = `A portal to the internet. Use this when you need to get specific content from a website.
// - Input should be a url (i.e. https://www.google.com). The output will be the text response of the GET request.`;
// }
// async _call(input) {
// const res = await fetch(input, {
// headers: this.headers
// });
// const text = await res.text();
// return text.slice(0, this.maxOutputLength);
// }
// }
// class RequestsPostTool extends Tool {
// constructor(headers = {}, { maxOutputLength } = {}) {
// super();
// this.name = 'requests_post';
// this.headers = headers;
// this.maxOutputLength = maxOutputLength || Infinity;
// this.description = `Use this when you want to POST to a website.
// - Input should be a json string with two keys: "url" and "data".
// - The value of "url" should be a string, and the value of "data" should be a dictionary of
// - key-value pairs you want to POST to the url as a JSON body.
// - Be careful to always use double quotes for strings in the json string
// - The output will be the text response of the POST request.`;
// }
// async _call(input) {
// try {
// const { url, data } = JSON.parse(input);
// const res = await fetch(url, {
// method: 'POST',
// headers: this.headers,
// body: JSON.stringify(data)
// });
// const text = await res.text();
// return text.slice(0, this.maxOutputLength);
// } catch (error) {
// return `${error}`;
// }
// }
// }
class HttpRequestTool extends Tool {
constructor(headers = {}, { maxOutputLength = Infinity } = {}) {
super();
this.headers = headers;
this.name = 'http_request';
this.maxOutputLength = maxOutputLength;
this.description = `Executes HTTP methods (GET, POST, PUT, DELETE, etc.). The input is an object with three keys: "url", "method", and "data". Even for GET or DELETE, include "data" key as an empty string. "method" is the HTTP method, and "url" is the desired endpoint. If POST or PUT, "data" should contain a stringified JSON representing the body to send. Only one url per use.`;
}
async _call(input) {
try {
const urlPattern = /"url":\s*"([^"]*)"/;
const methodPattern = /"method":\s*"([^"]*)"/;
const dataPattern = /"data":\s*"([^"]*)"/;
const url = input.match(urlPattern)[1];
const method = input.match(methodPattern)[1];
let data = input.match(dataPattern)[1];
// Parse 'data' back to JSON if possible
try {
data = JSON.parse(data);
} catch (e) {
// If it's not a JSON string, keep it as is
}
let options = {
method: method,
headers: this.headers
};
if (['POST', 'PUT', 'PATCH'].includes(method.toUpperCase()) && data) {
if (typeof data === 'object') {
options.body = JSON.stringify(data);
} else {
options.body = data;
}
options.headers['Content-Type'] = 'application/json';
}
const res = await fetch(url, options);
const text = await res.text();
if (text.includes('<html')) {
return 'This tool is not designed to browse web pages. Only use it for API calls.';
}
return text.slice(0, this.maxOutputLength);
} catch (error) {
console.log(error);
return `${error}`;
}
}
}
module.exports = HttpRequestTool;

View file

@ -0,0 +1,30 @@
const { Tool } = require('langchain/tools');
/**
* Represents a tool that allows an agent to ask a human for guidance when they are stuck
* or unsure of what to do next.
* @extends Tool
*/
export class HumanTool extends Tool {
/**
* The name of the tool.
* @type {string}
*/
name = 'Human';
/**
* A description for the agent to use
* @type {string}
*/
description = `You can ask a human for guidance when you think you
got stuck or you are not sure what to do next.
The input should be a question for the human.`;
/**
* Calls the tool with the provided input and returns a promise that resolves with a response from the human.
* @param {string} input - The input to provide to the human.
* @returns {Promise<string>} A promise that resolves with a response from the human.
*/
_call(input) {
return Promise.resolve(`${input}`);
}
}

View file

@ -0,0 +1,27 @@
const { Tool } = require('langchain/tools');
class SelfReflectionTool extends Tool {
constructor({ message, isGpt3 }) {
super();
this.reminders = 0;
this.name = 'self-reflection';
this.description = `Take this action to reflect on your thoughts & actions. For your input, provide answers for self-evaluation as part of one input, using this space as a canvas to explore and organize your ideas in response to the user's message. You can use multiple lines for your input. Perform this action sparingly and only when you are stuck.`;
this.message = message;
this.isGpt3 = isGpt3;
// this.returnDirect = true;
}
async _call(input) {
return this.selfReflect(input);
}
async selfReflect() {
if (this.isGpt3) {
return `I should finalize my reply as soon as I have satisfied the user's query.`;
} else {
return ``;
}
}
}
module.exports = SelfReflectionTool;

View file

@ -0,0 +1,85 @@
// Generates image using stable diffusion webui's api (automatic1111)
const fs = require('fs');
const { Tool } = require('langchain/tools');
const path = require('path');
const axios = require('axios');
const sharp = require('sharp');
class StableDiffusionAPI extends Tool {
constructor(fields) {
super();
this.name = 'stable-diffusion';
this.url = fields.SD_WEBUI_URL || this.getServerURL();
this.description = `You can generate images with 'stable-diffusion'. This tool is exclusively for visual content.
Guidelines:
- Visually describe the moods, details, structures, styles, and/or proportions of the image. Remember, the focus is on visual attributes.
- Craft your input by "showing" and not "telling" the imagery. Think in terms of what you'd want to see in a photograph or a painting.
- It's best to follow this format for image creation:
"detailed keywords to describe the subject, separated by comma | keywords we want to exclude from the final image"
- Here's an example prompt for generating a realistic portrait photo of a man:
"photo of a man in black clothes, half body, high detailed skin, coastline, overcast weather, wind, waves, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3 | semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, out of frame, low quality, ugly, mutation, deformed"
- Generate images only once per human query unless explicitly requested by the user`;
}
replaceNewLinesWithSpaces(inputString) {
return inputString.replace(/\r\n|\r|\n/g, ' ');
}
getMarkdownImageUrl(imageName) {
const imageUrl = path.join(this.relativeImageUrl, imageName).replace(/\\/g, '/').replace('public/', '');
return `![generated image](/${imageUrl})`;
}
getServerURL() {
const url = process.env.SD_WEBUI_URL || '';
if (!url) {
throw new Error('Missing SD_WEBUI_URL environment variable.');
}
return url;
}
async _call(input) {
const url = this.url;
const payload = {
prompt: input.split('|')[0],
negative_prompt: input.split('|')[1],
steps: 20
};
const response = await axios.post(`${url}/sdapi/v1/txt2img`, payload);
const image = response.data.images[0];
const pngPayload = { image: `data:image/png;base64,${image}` };
const response2 = await axios.post(`${url}/sdapi/v1/png-info`, pngPayload);
const info = response2.data.info;
// Generate unique name
const imageName = `${Date.now()}.png`;
this.outputPath = path.resolve(__dirname, '..', '..', '..', '..', 'client', 'public', 'images');
const appRoot = path.resolve(__dirname, '..', '..', '..', '..', 'client');
this.relativeImageUrl = path.relative(appRoot, this.outputPath);
// Check if directory exists, if not create it
if (!fs.existsSync(this.outputPath)) {
fs.mkdirSync(this.outputPath, { recursive: true });
}
try {
const buffer = Buffer.from(image.split(',', 1)[0], 'base64');
await sharp(buffer)
.withMetadata({
iptcpng: {
parameters: info
}
})
.toFile(this.outputPath + '/' + imageName);
this.result = this.getMarkdownImageUrl(imageName);
} catch (error) {
console.error('Error while saving the image:', error);
// this.result = theImageUrl;
}
return this.result;
}
}
module.exports = StableDiffusionAPI;

View file

@ -0,0 +1,82 @@
/* eslint-disable no-useless-escape */
const axios = require('axios');
const { Tool } = require('langchain/tools');
class WolframAlphaAPI extends Tool {
constructor(fields) {
super();
this.name = 'wolfram';
this.apiKey = fields.WOLFRAM_APP_ID || this.getAppId();
this.description = `Access computation, math, curated knowledge & real-time data through wolframAlpha.
- Understands natural language queries about entities in chemistry, physics, geography, history, art, astronomy, and more.
- Performs mathematical calculations, date and unit conversions, formula solving, etc.
General guidelines:
- Make natural-language queries in English; translate non-English queries before sending, then respond in the original language.
- Inform users if information is not from wolfram.
- ALWAYS use this exponent notation: "6*10^14", NEVER "6e14".
- Your input must ONLY be a single-line string.
- ALWAYS use proper Markdown formatting for all math, scientific, and chemical formulas, symbols, etc.: '$$\n[expression]\n$$' for standalone cases and '\( [expression] \)' when inline.
- Format inline wolfram Language code with Markdown code formatting.
- Convert inputs to simplified keyword queries whenever possible (e.g. convert "how many people live in France" to "France population").
- Use ONLY single-letter variable names, with or without integer subscript (e.g., n, n1, n_1).
- Use named physical constants (e.g., 'speed of light') without numerical substitution.
- Include a space between compound units (e.g., "Ω m" for "ohm*meter").
- To solve for a variable in an equation with units, consider solving a corresponding equation without units; exclude counting units (e.g., books), include genuine units (e.g., kg).
- If data for multiple properties is needed, make separate calls for each property.
- If a wolfram Alpha result is not relevant to the query:
-- If wolfram provides multiple 'Assumptions' for a query, choose the more relevant one(s) without explaining the initial result. If you are unsure, ask the user to choose.
- Performs complex calculations, data analysis, plotting, data import, and information retrieval.`;
// - Please ensure your input is properly formatted for wolfram Alpha.
// -- Re-send the exact same 'input' with NO modifications, and add the 'assumption' parameter, formatted as a list, with the relevant values.
// -- ONLY simplify or rephrase the initial query if a more relevant 'Assumption' or other input suggestions are not provided.
// -- Do not explain each step unless user input is needed. Proceed directly to making a better input based on the available assumptions.
// - wolfram Language code is accepted, but accepts only syntactically correct wolfram Language code.
}
async fetchRawText(url) {
try {
const response = await axios.get(url, { responseType: 'text' });
return response.data;
} catch (error) {
console.error(`Error fetching raw text: ${error}`);
throw error;
}
}
getAppId() {
const appId = process.env.WOLFRAM_APP_ID || '';
if (!appId) {
throw new Error('Missing WOLFRAM_APP_ID environment variable.');
}
return appId;
}
createWolframAlphaURL(query) {
// Clean up query
const formattedQuery = query.replaceAll(/`/g, '').replaceAll(/\n/g, ' ');
const baseURL = 'https://www.wolframalpha.com/api/v1/llm-api';
const encodedQuery = encodeURIComponent(formattedQuery);
const appId = this.apiKey || this.getAppId();
const url = `${baseURL}?input=${encodedQuery}&appid=${appId}`;
return url;
}
async _call(input) {
try {
const url = this.createWolframAlphaURL(input);
const response = await this.fetchRawText(url);
return response;
} catch (error) {
if (error.response && error.response.data) {
console.log('Error data:', error.response.data);
return error.response.data;
} else {
console.log(`Error querying Wolfram Alpha`, error.message);
// throw error;
return 'There was an error querying Wolfram Alpha.';
}
}
}
}
module.exports = WolframAlphaAPI;

View file

@ -0,0 +1,23 @@
const GoogleSearchAPI = require('./GoogleSearch');
const HttpRequestTool = require('./HttpRequestTool');
const AIPluginTool = require('./AIPluginTool');
const OpenAICreateImage = require('./DALL-E');
const StructuredSD = require('./structured/StableDiffusion');
const StableDiffusionAPI = require('./StableDiffusion');
const WolframAlphaAPI = require('./Wolfram');
const StructuredWolfram = require('./structured/Wolfram');
const SelfReflectionTool = require('./SelfReflection');
const availableTools = require('./manifest.json');
module.exports = {
availableTools,
GoogleSearchAPI,
HttpRequestTool,
AIPluginTool,
OpenAICreateImage,
StableDiffusionAPI,
StructuredSD,
WolframAlphaAPI,
StructuredWolfram,
SelfReflectionTool
}

View file

@ -0,0 +1,106 @@
[
{
"name": "Google",
"pluginKey": "google",
"description": "Use Google Search to find information about the weather, news, sports, and more.",
"icon": "https://i.imgur.com/SMmVkNB.png",
"authConfig": [
{
"authField": "GOOGLE_CSE_ID",
"label": "Google CSE ID",
"description": "This is your Google Custom Search Engine ID. For instructions on how to obtain this, see <a href='https://github.com/danny-avila/LibreChat/blob/main/docs/features/plugins/google_search.md'>Our Docs</a>."
},
{
"authField": "GOOGLE_API_KEY",
"label": "Google API Key",
"description": "This is your Google Custom Search API Key. For instructions on how to obtain this, see <a href='https://github.com/danny-avila/LibreChat/blob/main/docs/features/plugins/google_search.md'>Our Docs</a>."
}
]
},
{
"name": "Wolfram",
"pluginKey": "wolfram",
"description": "Access computation, math, curated knowledge & real-time data through Wolfram|Alpha and Wolfram Language.",
"icon": "https://www.wolframcdn.com/images/icons/Wolfram.png",
"authConfig": [
{
"authField": "WOLFRAM_APP_ID",
"label": "Wolfram App ID",
"description": "An AppID must be supplied in all calls to the Wolfram|Alpha API. You can get one by registering at <a href='http://products.wolframalpha.com/api/'>Wolfram|Alpha</a> and going to the <a href='https://developer.wolframalpha.com/portal/myapps/'>Developer Portal</a>."
}
]
},
{
"name": "Browser",
"pluginKey": "browser",
"description": "Scrape and summarize webpage data",
"icon": "/assets/web-browser.png",
"authConfig": [
{
"authField": "OPENAI_API_KEY",
"label": "OpenAI API Key",
"description": "Browser makes use of OpenAI embeddings"
}
]
},
{
"name": "Serpapi",
"pluginKey": "serpapi",
"description": "SerpApi is a real-time API to access search engine results.",
"icon": "https://i.imgur.com/5yQHUz4.png",
"authConfig": [
{
"authField": "SERPAPI_API_KEY",
"label": "Serpapi Private API Key",
"description": "Private Key for Serpapi. Register at <a href='https://serpapi.com/'>Serpapi</a> to obtain a private key."
}
]
},
{
"name": "DALL-E",
"pluginKey": "dall-e",
"description": "Create realistic images and art from a description in natural language",
"icon": "https://i.imgur.com/u2TzXzH.png",
"authConfig": [
{
"authField": "DALLE_API_KEY",
"label": "OpenAI API Key",
"description": "You can use DALL-E with your API Key from OpenAI."
}
]
},
{
"name": "Calculator",
"pluginKey": "calculator",
"description": "Perform simple and complex mathematical calculations.",
"icon": "https://i.imgur.com/RHsSG5h.png",
"isAuthRequired": "false",
"authConfig": []
},
{
"name": "Stable Diffusion",
"pluginKey": "stable-diffusion",
"description": "Generate photo-realistic images given any text input.",
"icon": "https://i.imgur.com/Yr466dp.png",
"authConfig": [
{
"authField": "SD_WEBUI_URL",
"label": "Your Stable Diffusion WebUI API URL",
"description": "You need to provide the URL of your Stable Diffusion WebUI API. For instructions on how to obtain this, see <a href='url'>Our Docs</a>."
}
]
},
{
"name": "Zapier",
"pluginKey": "zapier",
"description": "Interact with over 5,000+ apps like Google Sheets, Gmail, HubSpot, Salesforce, and thousands more.",
"icon": "https://cdn.zappy.app/8f853364f9b383d65b44e184e04689ed.png",
"authConfig": [
{
"authField": "ZAPIER_NLA_API_KEY",
"label": "Zapier API Key",
"description": "You can use Zapier with your API Key from Zapier."
}
]
}
]

View file

@ -0,0 +1,39 @@
const axios = require('axios');
const fs = require('fs');
const path = require('path');
async function saveImageFromUrl(url, outputPath, outputFilename) {
try {
// Fetch the image from the URL
const response = await axios({
url,
responseType: 'stream'
});
// Check if the output directory exists, if not, create it
if (!fs.existsSync(outputPath)) {
fs.mkdirSync(outputPath, { recursive: true });
}
// Ensure the output filename has a '.png' extension
const filenameWithPngExt = outputFilename.endsWith('.png')
? outputFilename
: `${outputFilename}.png`;
// Create a writable stream for the output path
const outputFilePath = path.join(outputPath, filenameWithPngExt);
const writer = fs.createWriteStream(outputFilePath);
// Pipe the response data to the output file
response.data.pipe(writer);
return new Promise((resolve, reject) => {
writer.on('finish', resolve);
writer.on('error', reject);
});
} catch (error) {
console.error('Error while saving the image:', error);
}
}
module.exports = saveImageFromUrl;

View file

@ -0,0 +1,89 @@
// Generates image using stable diffusion webui's api (automatic1111)
const fs = require('fs');
const { StructuredTool } = require('langchain/tools');
const { z } = require('zod');
const path = require('path');
const axios = require('axios');
const sharp = require('sharp');
class StableDiffusionAPI extends StructuredTool {
constructor(fields) {
super();
this.name = 'stable-diffusion';
this.url = fields.SD_WEBUI_URL || this.getServerURL();
this.description = `You can generate images with 'stable-diffusion'. This tool is exclusively for visual content.
Guidelines:
- Visually describe the moods, details, structures, styles, and/or proportions of the image. Remember, the focus is on visual attributes.
- Craft your input by "showing" and not "telling" the imagery. Think in terms of what you'd want to see in a photograph or a painting.
- Here's an example for generating a realistic portrait photo of a man:
"prompt":"photo of a man in black clothes, half body, high detailed skin, coastline, overcast weather, wind, waves, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
"negative_prompt":"semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, out of frame, low quality, ugly, mutation, deformed"
- Generate images only once per human query unless explicitly requested by the user`;
this.schema = z.object({
prompt: z.string().describe("Detailed keywords to describe the subject, using at least 7 keywords to accurately describe the image, separated by comma"),
negative_prompt: z.string().describe("Keywords we want to exclude from the final image, using at least 7 keywords to accurately describe the image, separated by comma")
});
}
replaceNewLinesWithSpaces(inputString) {
return inputString.replace(/\r\n|\r|\n/g, ' ');
}
getMarkdownImageUrl(imageName) {
const imageUrl = path.join(this.relativeImageUrl, imageName).replace(/\\/g, '/').replace('public/', '');
return `![generated image](/${imageUrl})`;
}
getServerURL() {
const url = process.env.SD_WEBUI_URL || '';
if (!url) {
throw new Error('Missing SD_WEBUI_URL environment variable.');
}
return url;
}
async _call(data) {
const url = this.url;
const { prompt, negative_prompt } = data;
const payload = {
prompt,
negative_prompt,
steps: 20
};
const response = await axios.post(`${url}/sdapi/v1/txt2img`, payload);
const image = response.data.images[0];
const pngPayload = { image: `data:image/png;base64,${image}` };
const response2 = await axios.post(`${url}/sdapi/v1/png-info`, pngPayload);
const info = response2.data.info;
// Generate unique name
const imageName = `${Date.now()}.png`;
this.outputPath = path.resolve(__dirname, '..', '..', '..', '..', '..', 'client', 'public', 'images');
const appRoot = path.resolve(__dirname, '..', '..', '..', '..', '..', 'client');
this.relativeImageUrl = path.relative(appRoot, this.outputPath);
// Check if directory exists, if not create it
if (!fs.existsSync(this.outputPath)) {
fs.mkdirSync(this.outputPath, { recursive: true });
}
try {
const buffer = Buffer.from(image.split(',', 1)[0], 'base64');
await sharp(buffer)
.withMetadata({
iptcpng: {
parameters: info
}
})
.toFile(this.outputPath + '/' + imageName);
this.result = this.getMarkdownImageUrl(imageName);
} catch (error) {
console.error('Error while saving the image:', error);
// this.result = theImageUrl;
}
return this.result;
}
}
module.exports = StableDiffusionAPI;

View file

@ -0,0 +1,72 @@
/* eslint-disable no-useless-escape */
const axios = require('axios');
const { StructuredTool } = require('langchain/tools');
const { z } = require('zod');
class WolframAlphaAPI extends StructuredTool {
constructor(fields) {
super();
this.name = 'wolfram';
this.apiKey = fields.WOLFRAM_APP_ID || this.getAppId();
this.description = `WolframAlpha offers computation, math, curated knowledge, and real-time data. It handles natural language queries and performs complex calculations.
Guidelines include:
- Use English for queries and inform users if information isn't from Wolfram.
- Use "6*10^14" for exponent notation and single-line strings for input.
- Use Markdown for formulas and simplify queries to keywords.
- Use single-letter variable names and named physical constants.
- Include a space between compound units and consider equations without units when solving.
- Make separate calls for each property and choose relevant 'Assumptions' if results aren't relevant.
- The tool also performs data analysis, plotting, and information retrieval.`;
this.schema = z.object({
nl_query: z.string().describe("Natural language query to WolframAlpha following the guidelines"),
});
}
async fetchRawText(url) {
try {
const response = await axios.get(url, { responseType: 'text' });
return response.data;
} catch (error) {
console.error(`Error fetching raw text: ${error}`);
throw error;
}
}
getAppId() {
const appId = process.env.WOLFRAM_APP_ID || '';
if (!appId) {
throw new Error('Missing WOLFRAM_APP_ID environment variable.');
}
return appId;
}
createWolframAlphaURL(query) {
// Clean up query
const formattedQuery = query.replaceAll(/`/g, '').replaceAll(/\n/g, ' ');
const baseURL = 'https://www.wolframalpha.com/api/v1/llm-api';
const encodedQuery = encodeURIComponent(formattedQuery);
const appId = this.apiKey || this.getAppId();
const url = `${baseURL}?input=${encodedQuery}&appid=${appId}`;
return url;
}
async _call(data) {
try {
const { nl_query } = data;
const url = this.createWolframAlphaURL(nl_query);
const response = await this.fetchRawText(url);
return response;
} catch (error) {
if (error.response && error.response.data) {
console.log('Error data:', error.response.data);
return error.response.data;
} else {
console.log(`Error querying Wolfram Alpha`, error.message);
// throw error;
return 'There was an error querying Wolfram Alpha.';
}
}
}
}
module.exports = WolframAlphaAPI;

View file

@ -0,0 +1,163 @@
const { getUserPluginAuthValue } = require('../../../../server/services/PluginService');
const { OpenAIEmbeddings } = require('langchain/embeddings/openai');
const { ZapierToolKit } = require('langchain/agents');
const {
SerpAPI,
ZapierNLAWrapper
} = require('langchain/tools');
const { ChatOpenAI } = require('langchain/chat_models/openai');
const { Calculator } = require('langchain/tools/calculator');
const { WebBrowser } = require('langchain/tools/webbrowser');
const {
availableTools,
AIPluginTool,
GoogleSearchAPI,
WolframAlphaAPI,
StructuredWolfram,
HttpRequestTool,
OpenAICreateImage,
StableDiffusionAPI,
StructuredSD,
} = require('../');
const validateTools = async (user, tools = []) => {
try {
const validToolsSet = new Set(tools);
const availableToolsToValidate = availableTools.filter((tool) =>
validToolsSet.has(tool.pluginKey)
);
const validateCredentials = async (authField, toolName) => {
const adminAuth = process.env[authField];
if (adminAuth && adminAuth.length > 0) {
return;
}
const userAuth = await getUserPluginAuthValue(user, authField);
if (userAuth && userAuth.length > 0) {
return;
}
validToolsSet.delete(toolName);
};
for (const tool of availableToolsToValidate) {
if (!tool.authConfig || tool.authConfig.length === 0) {
continue;
}
for (const auth of tool.authConfig) {
await validateCredentials(auth.authField, tool.pluginKey);
}
}
return Array.from(validToolsSet.values());
} catch (err) {
console.log('There was a problem validating tools', err);
throw new Error(err);
}
};
const loadToolWithAuth = async (user, authFields, ToolConstructor, options = {}) => {
return async function () {
let authValues = {};
for (const authField of authFields) {
let authValue = process.env[authField];
if (!authValue) {
authValue = await getUserPluginAuthValue(user, authField);
}
authValues[authField] = authValue;
}
return new ToolConstructor({ ...options, ...authValues });
};
};
const loadTools = async ({ user, model, functions = null, tools = [], options = {} }) => {
const toolConstructors = {
calculator: Calculator,
google: GoogleSearchAPI,
wolfram: functions ? StructuredWolfram : WolframAlphaAPI,
'dall-e': OpenAICreateImage,
'stable-diffusion': functions ? StructuredSD : StableDiffusionAPI
};
const customConstructors = {
browser: async () => {
let openAIApiKey = process.env.OPENAI_API_KEY;
if (!openAIApiKey) {
openAIApiKey = await getUserPluginAuthValue(user, 'OPENAI_API_KEY');
}
return new WebBrowser({ model, embeddings: new OpenAIEmbeddings({ openAIApiKey }) });
},
serpapi: async () => {
let apiKey = process.env.SERPAPI_API_KEY;
if (!apiKey) {
apiKey = await getUserPluginAuthValue(user, 'SERPAPI_API_KEY');
}
return new SerpAPI(apiKey, {
location: 'Austin,Texas,United States',
hl: 'en',
gl: 'us'
});
},
zapier: async () => {
let apiKey = process.env.ZAPIER_NLA_API_KEY;
if (!apiKey) {
apiKey = await getUserPluginAuthValue(user, 'ZAPIER_NLA_API_KEY');
}
const zapier = new ZapierNLAWrapper({ apiKey });
return ZapierToolKit.fromZapierNLAWrapper(zapier);
},
plugins: async () => {
return [
new HttpRequestTool(),
await AIPluginTool.fromPluginUrl(
'https://www.klarna.com/.well-known/ai-plugin.json',
new ChatOpenAI({ openAIApiKey: options.openAIApiKey, temperature: 0 })
)
];
}
};
const requestedTools = {};
const toolOptions = {
serpapi: { location: 'Austin,Texas,United States', hl: 'en', gl: 'us' }
};
const toolAuthFields = {};
availableTools.forEach((tool) => {
if (customConstructors[tool.pluginKey]) {
return;
}
toolAuthFields[tool.pluginKey] = tool.authConfig.map((auth) => auth.authField);
});
for (const tool of tools) {
if (customConstructors[tool]) {
requestedTools[tool] = customConstructors[tool];
continue;
}
if (toolConstructors[tool]) {
const options = toolOptions[tool] || {};
const toolInstance = await loadToolWithAuth(
user,
toolAuthFields[tool],
toolConstructors[tool],
options
);
requestedTools[tool] = toolInstance;
}
}
return requestedTools;
};
module.exports = {
validateTools,
loadTools
};

View file

@ -0,0 +1,189 @@
const mockUser = {
_id: 'fakeId',
save: jest.fn(),
findByIdAndDelete: jest.fn(),
};
var mockPluginService = {
updateUserPluginAuth: jest.fn(),
deleteUserPluginAuth: jest.fn(),
getUserPluginAuthValue: jest.fn()
};
jest.mock('../../../../models/User', () => {
return function() {
return mockUser;
};
});
jest.mock('../../../../server/services/PluginService', () => mockPluginService);
const User = require('../../../../models/User');
const { validateTools, loadTools } = require('./');
const PluginService = require('../../../../server/services/PluginService');
const { BaseChatModel } = require('langchain/chat_models/openai');
const { Calculator } = require('langchain/tools/calculator');
const { availableTools, OpenAICreateImage, GoogleSearchAPI, StructuredSD } = require('../');
describe('Tool Handlers', () => {
let fakeUser;
const pluginKey = 'dall-e';
const pluginKey2 = 'wolfram';
const initialTools = [pluginKey, pluginKey2];
const ToolClass = OpenAICreateImage;
const mockCredential = 'mock-credential';
const mainPlugin = availableTools.find((tool) => tool.pluginKey === pluginKey);
const authConfigs = mainPlugin.authConfig;
beforeAll(async () => {
mockUser.save.mockResolvedValue(undefined);
const userAuthValues = {};
mockPluginService.getUserPluginAuthValue.mockImplementation((userId, authField) => {
return userAuthValues[`${userId}-${authField}`];
});
mockPluginService.updateUserPluginAuth.mockImplementation((userId, authField, _pluginKey, credential) => {
userAuthValues[`${userId}-${authField}`] = credential;
});
fakeUser = new User({
name: 'Fake User',
username: 'fakeuser',
email: 'fakeuser@example.com',
emailVerified: false,
password: 'fakepassword123',
avatar: '',
provider: 'local',
role: 'USER',
googleId: null,
plugins: [],
refreshToken: []
});
await fakeUser.save();
for (const authConfig of authConfigs) {
await PluginService.updateUserPluginAuth(fakeUser._id, authConfig.authField, pluginKey, mockCredential);
}
});
afterAll(async () => {
await mockUser.findByIdAndDelete(fakeUser._id);
for (const authConfig of authConfigs) {
await PluginService.deleteUserPluginAuth(fakeUser._id, authConfig.authField);
}
});
describe('validateTools', () => {
it('returns valid tools given input tools and user authentication', async () => {
const validTools = await validateTools(fakeUser._id, initialTools);
expect(validTools).toBeDefined();
console.log('validateTools: validTools', validTools);
expect(validTools.some((tool) => tool === pluginKey)).toBeTruthy();
expect(validTools.length).toBeGreaterThan(0);
});
it('removes tools without valid credentials from the validTools array', async () => {
const validTools = await validateTools(fakeUser._id, initialTools);
expect(validTools.some((tool) => tool.pluginKey === pluginKey2)).toBeFalsy();
});
it('returns an empty array when no authenticated tools are provided', async () => {
const validTools = await validateTools(fakeUser._id, []);
expect(validTools).toEqual([]);
});
it('should validate a tool from an Environment Variable', async () => {
const plugin = availableTools.find((tool) => tool.pluginKey === pluginKey2);
const authConfigs = plugin.authConfig;
for (const authConfig of authConfigs) {
process.env[authConfig.authField] = mockCredential;
}
const validTools = await validateTools(fakeUser._id, [pluginKey2]);
expect(validTools.length).toEqual(1);
for (const authConfig of authConfigs) {
delete process.env[authConfig.authField];
}
});
});
describe('loadTools', () => {
let toolFunctions;
let loadTool1;
let loadTool2;
let loadTool3;
const sampleTools = [...initialTools, 'calculator'];
let ToolClass2 = Calculator;
let remainingTools = availableTools.filter(
(tool) => sampleTools.indexOf(tool.pluginKey) === -1
);
beforeAll(async () => {
toolFunctions = await loadTools({
user: fakeUser._id,
model: BaseChatModel,
tools: sampleTools
});
loadTool1 = toolFunctions[sampleTools[0]];
loadTool2 = toolFunctions[sampleTools[1]];
loadTool3 = toolFunctions[sampleTools[2]];
});
it('returns the expected load functions for requested tools', async () => {
expect(loadTool1).toBeDefined();
expect(loadTool2).toBeDefined();
expect(loadTool3).toBeDefined();
for (const tool of remainingTools) {
expect(toolFunctions[tool.pluginKey]).toBeUndefined();
}
});
it('should initialize an authenticated tool or one without authentication', async () => {
const authTool = await loadTool1();
const tool = await loadTool3();
expect(authTool).toBeInstanceOf(ToolClass);
expect(tool).toBeInstanceOf(ToolClass2);
});
it('should throw an error for an unauthenticated tool', async () => {
try {
await loadTool2();
} catch (error) {
// eslint-disable-next-line jest/no-conditional-expect
expect(error).toBeDefined();
}
});
it('should initialize an authenticated tool through Environment Variables', async () => {
let testPluginKey = 'google';
let TestClass = GoogleSearchAPI;
const plugin = availableTools.find((tool) => tool.pluginKey === testPluginKey);
const authConfigs = plugin.authConfig;
for (const authConfig of authConfigs) {
process.env[authConfig.authField] = mockCredential;
}
toolFunctions = await loadTools({
user: fakeUser._id,
model: BaseChatModel,
tools: [testPluginKey]
});
const Tool = await toolFunctions[testPluginKey]();
expect(Tool).toBeInstanceOf(TestClass);
});
it('returns an empty object when no tools are requested', async () => {
toolFunctions = await loadTools({
user: fakeUser._id,
model: BaseChatModel
});
expect(toolFunctions).toEqual({});
});
it('should return the StructuredTool version when using functions', async () => {
process.env.SD_WEBUI_URL = mockCredential;
toolFunctions = await loadTools({
user: fakeUser._id,
model: BaseChatModel,
tools: ['stable-diffusion'],
functions: true
});
const structuredTool = await toolFunctions['stable-diffusion']();
expect(structuredTool).toBeInstanceOf(StructuredSD);
delete process.env.SD_WEBUI_URL;
});
});
});

View file

@ -0,0 +1,6 @@
const { validateTools, loadTools } = require('./handleTools');
module.exports = {
validateTools,
loadTools
};

View file

@ -0,0 +1,60 @@
Certainly! Here is the text above:
\`\`\`
Assistant is a large language model trained by OpenAI.
Knowledge Cutoff: 2021-09
Current date: 2023-05-06
# Tools
## Wolfram
// Access dynamic computation and curated data from WolframAlpha and Wolfram Cloud.
General guidelines:
- Use only getWolframAlphaResults or getWolframCloudResults endpoints.
- Prefer getWolframAlphaResults unless Wolfram Language code should be evaluated.
- Use getWolframAlphaResults for natural-language queries in English; translate non-English queries before sending, then respond in the original language.
- Use getWolframCloudResults for problems solvable with Wolfram Language code.
- Suggest only Wolfram Language for external computation.
- Inform users if information is not from Wolfram endpoints.
- Display image URLs with Markdown syntax: ![URL]
- ALWAYS use this exponent notation: \`6*10^14\`, NEVER \`6e14\`.
- ALWAYS use {"input": query} structure for queries to Wolfram endpoints; \`query\` must ONLY be a single-line string.
- ALWAYS use proper Markdown formatting for all math, scientific, and chemical formulas, symbols, etc.: '$$\n[expression]\n$$' for standalone cases and '\( [expression] \)' when inline.
- Format inline Wolfram Language code with Markdown code formatting.
- Never mention your knowledge cutoff date; Wolfram may return more recent data.
getWolframAlphaResults guidelines:
- Understands natural language queries about entities in chemistry, physics, geography, history, art, astronomy, and more.
- Performs mathematical calculations, date and unit conversions, formula solving, etc.
- Convert inputs to simplified keyword queries whenever possible (e.g. convert "how many people live in France" to "France population").
- Use ONLY single-letter variable names, with or without integer subscript (e.g., n, n1, n_1).
- Use named physical constants (e.g., 'speed of light') without numerical substitution.
- Include a space between compound units (e.g., "Ω m" for "ohm*meter").
- To solve for a variable in an equation with units, consider solving a corresponding equation without units; exclude counting units (e.g., books), include genuine units (e.g., kg).
- If data for multiple properties is needed, make separate calls for each property.
- If a Wolfram Alpha result is not relevant to the query:
-- If Wolfram provides multiple 'Assumptions' for a query, choose the more relevant one(s) without explaining the initial result. If you are unsure, ask the user to choose.
-- Re-send the exact same 'input' with NO modifications, and add the 'assumption' parameter, formatted as a list, with the relevant values.
-- ONLY simplify or rephrase the initial query if a more relevant 'Assumption' or other input suggestions are not provided.
-- Do not explain each step unless user input is needed. Proceed directly to making a better API call based on the available assumptions.
- Wolfram Language code guidelines:
- Accepts only syntactically correct Wolfram Language code.
- Performs complex calculations, data analysis, plotting, data import, and information retrieval.
- Before writing code that uses Entity, EntityProperty, EntityClass, etc. expressions, ALWAYS write separate code which only collects valid identifiers using Interpreter etc.; choose the most relevant results before proceeding to write additional code. Examples:
-- Find the EntityType that represents countries: \`Interpreter["EntityType",AmbiguityFunction->All]["countries"]\`.
-- Find the Entity for the Empire State Building: \`Interpreter["Building",AmbiguityFunction->All]["empire state"]\`.
-- EntityClasses: Find the "Movie" entity class for Star Trek movies: \`Interpreter["MovieClass",AmbiguityFunction->All]["star trek"]\`.
-- Find EntityProperties associated with "weight" of "Element" entities: \`Interpreter[Restricted["EntityProperty", "Element"],AmbiguityFunction->All]["weight"]\`.
-- If all else fails, try to find any valid Wolfram Language representation of a given input: \`SemanticInterpretation["skyscrapers",_,Hold,AmbiguityFunction->All]\`.
-- Prefer direct use of entities of a given type to their corresponding typeData function (e.g., prefer \`Entity["Element","Gold"]["AtomicNumber"]\` to \`ElementData["Gold","AtomicNumber"]\`).
- When composing code:
-- Use batching techniques to retrieve data for multiple entities in a single call, if applicable.
-- Use Association to organize and manipulate data when appropriate.
-- Optimize code for performance and minimize the number of calls to external sources (e.g., the Wolfram Knowledgebase)
-- Use only camel case for variable names (e.g., variableName).
-- Use ONLY double quotes around all strings, including plot labels, etc. (e.g., \`PlotLegends -> {"sin(x)", "cos(x)", "tan(x)"}\`).
-- Avoid use of QuantityMagnitude.
-- If unevaluated Wolfram Language symbols appear in API results, use \`EntityValue[Entity["WolframLanguageSymbol",symbol],{"PlaintextUsage","Options"}]\` to validate or retrieve usage information for relevant symbols; \`symbol\` may be a list of symbols.
-- Apply Evaluate to complex expressions like integrals before plotting (e.g., \`Plot[Evaluate[Integrate[...]]]\`).
- Remove all comments and formatting from code passed to the "input" parameter; for example: instead of \`square[x_] := Module[{result},\n result = x^2 (* Calculate the square *)\n]\`, send \`square[x_]:=Module[{result},result=x^2]\`.
- In ALL responses that involve code, write ALL code in Wolfram Language; create Wolfram Language functions even if an implementation is already well known in another language.