mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-09-22 06:00:56 +02:00
📚 docs: Separate LiteLLM and Ollama Documentation (#1948)
* Separate LiteLLM and Ollama Documentation * Clarify Ollama Setup * Fix litellm config
This commit is contained in:
parent
b2ef75e009
commit
78f52859c4
4 changed files with 179 additions and 199 deletions
|
@ -92,3 +92,69 @@ version: '3.4'
|
|||
# meilisearch:
|
||||
# ports:
|
||||
# - 7700:7700
|
||||
|
||||
# # ADD OLLAMA
|
||||
# ollama:
|
||||
# image: ollama/ollama:latest
|
||||
# deploy:
|
||||
# resources:
|
||||
# reservations:
|
||||
# devices:
|
||||
# - driver: nvidia
|
||||
# capabilities: [compute, utility]
|
||||
# ports:
|
||||
# - "11434:11434"
|
||||
# volumes:
|
||||
# - ./ollama:/root/.ollama
|
||||
|
||||
# # ADD LITELLM BASIC - NEED TO CONFIGURE litellm-config.yaml, ONLY NEED ENV TO ENABLE REDIS FOR CACHING OR LANGFUSE FOR MONITORING
|
||||
# litellm:
|
||||
# image: ghcr.io/berriai/litellm:main-latest
|
||||
# volumes:
|
||||
# - ./litellm/litellm-config.yaml:/app/config.yaml
|
||||
# command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
|
||||
# environment:
|
||||
# REDIS_HOST: redis
|
||||
# REDIS_PORT: 6379
|
||||
# REDIS_PASSWORD: RedisChangeMe
|
||||
# LANGFUSE_PUBLIC_KEY: pk-lf-RandomStringFromLangfuseWebInterface
|
||||
# LANGFUSE_SECRET_KEY: sk-lf-RandomStringFromLangfuseWebInterface
|
||||
# LANGFUSE_HOST: http://langfuse-server:3000
|
||||
|
||||
# # ADD LITELLM CACHING
|
||||
# redis:
|
||||
# image: redis:7-alpine
|
||||
# command:
|
||||
# - sh
|
||||
# - -c # this is to evaluate the $REDIS_PASSWORD from the env
|
||||
# - redis-server --appendonly yes --requirepass $$REDIS_PASSWORD ## $$ because of docker-compose
|
||||
# environment:
|
||||
# REDIS_PASSWORD: RedisChangeMe
|
||||
# volumes:
|
||||
# - ./redis:/data
|
||||
|
||||
# # ADD LITELLM MONITORING
|
||||
# langfuse-server:
|
||||
# image: ghcr.io/langfuse/langfuse:latest
|
||||
# depends_on:
|
||||
# - db
|
||||
# ports:
|
||||
# - "3000:3000"
|
||||
# environment:
|
||||
# - NODE_ENV=production
|
||||
# - DATABASE_URL=postgresql://postgres:PostgresChangeMe@db:5432/postgres
|
||||
# - NEXTAUTH_SECRET=ChangeMe
|
||||
# - SALT=ChangeMe
|
||||
# - NEXTAUTH_URL=http://localhost:3000
|
||||
# - TELEMETRY_ENABLED=${TELEMETRY_ENABLED:-true}
|
||||
# - NEXT_PUBLIC_SIGN_UP_DISABLED=${NEXT_PUBLIC_SIGN_UP_DISABLED:-false}
|
||||
# - LANGFUSE_ENABLE_EXPERIMENTAL_FEATURES=${LANGFUSE_ENABLE_EXPERIMENTAL_FEATURES:-false}
|
||||
# db:
|
||||
# image: postgres
|
||||
# restart: always
|
||||
# environment:
|
||||
# - POSTGRES_USER=postgres
|
||||
# - POSTGRES_PASSWORD=PostgresChangeMe
|
||||
# - POSTGRES_DB=postgres
|
||||
# volumes:
|
||||
# - ./postgres:/var/lib/postgresql/data
|
||||
|
|
|
@ -259,5 +259,55 @@ Some of the endpoints are marked as **Known,** which means they might have speci
|
|||
forcePrompt: false
|
||||
modelDisplayLabel: "together.ai"
|
||||
```
|
||||
## LiteLLM
|
||||
> LiteLLM API key: master_key value [LiteLLM](./litellm.md)
|
||||
|
||||

|
||||
**Notes:**
|
||||
|
||||
- Reference [LiteLLM](./litellm.md) for configuration.
|
||||
|
||||
```yaml
|
||||
- name: "LiteLLM"
|
||||
apiKey: "sk-from-config-file"
|
||||
baseURL: "http://localhost:8000/v1"
|
||||
models:
|
||||
default: ["gpt-3.5-turbo"]
|
||||
fetch: true
|
||||
titleConvo: true
|
||||
titleModel: "gpt-3.5-turbo"
|
||||
summarize: false
|
||||
summaryModel: "gpt-3.5-turbo"
|
||||
forcePrompt: false
|
||||
modelDisplayLabel: "LiteLLM"
|
||||
```
|
||||
|
||||
## Ollama
|
||||
> Ollama API key: Required but ignored - [Ollama OpenAI Compatibility](https://github.com/ollama/ollama/blob/main/docs/openai.md)
|
||||
|
||||
**Notes:**
|
||||
|
||||
- **Known:** icon provided.
|
||||
- **Known issue:** fetching list of models is not supported. See [Pull Request 2728](https://github.com/ollama/ollama/pull/2728).
|
||||
- Download models with ollama run command. See [Ollama Library](https://ollama.com/library)
|
||||
- The example includes a top 5 popular model list from the Ollama Library, which was last updated on March 1, 2024, for your convenience.
|
||||
|
||||
```yaml
|
||||
- name: "Ollama"
|
||||
apiKey: "ollama"
|
||||
baseURL: "http://localhost:11434/v1/"
|
||||
models:
|
||||
default: [
|
||||
"llama2",
|
||||
"mistral",
|
||||
"codellama",
|
||||
"dolphin-mixtral",
|
||||
"mistral-openorca"
|
||||
]
|
||||
fetch: false # fetching list of models is not supported
|
||||
titleConvo: true
|
||||
titleModel: "llama2"
|
||||
summarize: false
|
||||
summaryModel: "llama2"
|
||||
forcePrompt: false
|
||||
modelDisplayLabel: "Ollama"
|
||||
```
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
---
|
||||
title: 🚅 LiteLLM and Ollama
|
||||
title: 🚅 LiteLLM
|
||||
description: Using LibreChat with LiteLLM Proxy
|
||||
weight: -7
|
||||
---
|
||||
|
@ -12,12 +12,18 @@ Use **[LiteLLM Proxy](https://docs.litellm.ai/docs/simple_proxy)** for:
|
|||
* Authentication & Spend Tracking Virtual Keys
|
||||
|
||||
## Start LiteLLM Proxy Server
|
||||
### Pip install litellm
|
||||
```shell
|
||||
pip install litellm
|
||||
```
|
||||
### 1. Uncomment desired sections in docker-compose.override.yml
|
||||
The override file contains sections for the below LiteLLM features
|
||||
|
||||
### Create a config.yaml for litellm proxy
|
||||
#### Caching with Redis
|
||||
Litellm supports in-memory, redis, and s3 caching. Note: Caching currently only works with exact matching.
|
||||
|
||||
#### Performance Monitoring with Langfuse
|
||||
Litellm supports various logging and observability options. The settings below will enable Langfuse which will provide a cache_hit tag showing which conversations used cache.
|
||||
|
||||
### 2. Create a config.yaml for LiteLLM proxy
|
||||
LiteLLM requires a configuration file in addition to the override file. The file
|
||||
below has the options to enable llm proxy to various providers, load balancing, Redis caching, and Langfuse monitoring. Review documentation for other configuration options.
|
||||
More information on LiteLLM configurations here: **[docs.litellm.ai/docs/simple_proxy](https://docs.litellm.ai/docs/simple_proxy)**
|
||||
|
||||
```yaml
|
||||
|
@ -40,42 +46,29 @@ model_list:
|
|||
api_base: https://openai-france-1234.openai.azure.com/
|
||||
api_key:
|
||||
rpm: 1440
|
||||
- model_name: mixtral
|
||||
litellm_params:
|
||||
model: ollama/mixtral:8x7b-instruct-v0.1-q5_K_M
|
||||
api_base: http://ollama:11434
|
||||
stream: True
|
||||
- model_name: mistral
|
||||
litellm_params:
|
||||
model: ollama/mistral
|
||||
api_base: http://ollama:11434
|
||||
stream: True
|
||||
litellm_settings:
|
||||
success_callback: ["langfuse"]
|
||||
cache: True
|
||||
cache_params:
|
||||
type: "redis"
|
||||
supported_call_types: ["acompletion", "completion", "embedding", "aembedding"]
|
||||
general_settings:
|
||||
master_key: sk_live_SetToRandomValue
|
||||
```
|
||||
|
||||
### Start the proxy
|
||||
```shell
|
||||
litellm --config /path/to/config.yaml
|
||||
### 3. Configure LibreChat
|
||||
|
||||
#INFO: Proxy running on http://0.0.0.0:8000
|
||||
```
|
||||
|
||||
## Use LiteLLM Proxy Server with LibreChat
|
||||
|
||||
|
||||
#### 1. Clone the repo
|
||||
```shell
|
||||
git clone https://github.com/danny-avila/LibreChat.git
|
||||
```
|
||||
|
||||
|
||||
#### 2. Modify Librechat's `docker-compose.yml`
|
||||
```yaml
|
||||
OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions
|
||||
```
|
||||
|
||||
**Important**: As of v0.6.6, it's recommend you use the `librechat.yaml` [Configuration file (guide here)](./custom_config.md) to add Reverse Proxies as separate endpoints.
|
||||
|
||||
#### 3. Save fake OpenAI key in Librechat's `.env`
|
||||
|
||||
Copy Librechat's `.env.example` to `.env` and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key).
|
||||
```env
|
||||
OPENAI_API_KEY=sk-1234
|
||||
```
|
||||
|
||||
#### 4. Run LibreChat:
|
||||
```shell
|
||||
docker compose up
|
||||
```
|
||||
Use `librechat.yaml` [Configuration file (guide here)](./ai_endpoints.md) to add Reverse Proxies as separate endpoints.
|
||||
|
||||
---
|
||||
|
||||
|
@ -102,162 +95,4 @@ Key components and features include:
|
|||
- **Deployment and Performance**: Information on deploying LiteLLM Proxy and its performance metrics.
|
||||
- **Proxy CLI Arguments**: A wide range of command-line arguments for customization.
|
||||
|
||||
Overall, LiteLLM Server offers a comprehensive suite of tools for managing, deploying, and interacting with a variety of LLMs, making it a versatile choice for large-scale AI applications.
|
||||
|
||||
## Ollama
|
||||
Use [Ollama](https://ollama.ai/) for
|
||||
|
||||
* Run large language models on local hardware
|
||||
* Host multiple models
|
||||
* Dynamically load the model upon request
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
- **Linux**: Requires a Linux distrubution support by official Nvidia drivers. [Nvidia CUDA Toolkit](https://developer.nvidia.com/cuda-downloads?target_os=Linux)
|
||||
- **Windows**: Requires Windows Subsytem for Linux. Follow Nvidia instructions at [Nvidia WSL User Guide](https://docs.nvidia.com/cuda/wsl-user-guide/index.html)
|
||||
- **macOS**: [macOS Ollama Download](https://ollama.ai/download/mac)
|
||||
|
||||
### docker-compose.override.yml with GPU
|
||||
```yaml
|
||||
version: "3.8"
|
||||
services:
|
||||
litellm:
|
||||
image: ghcr.io/berriai/litellm:main-latest
|
||||
volumes:
|
||||
- ./litellm/litellm-config.yaml:/app/config.yaml
|
||||
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
|
||||
ollama:
|
||||
image: ollama/ollama
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [compute, utility]
|
||||
ports:
|
||||
- "11434:11434"
|
||||
volumes:
|
||||
- ./ollama:/root/.ollama
|
||||
|
||||
```
|
||||
|
||||
### Loading Models in Ollama
|
||||
1. Browse the available models at [Ollama Library](https://ollama.ai/library)
|
||||
2. Run ```docker exec -it ollama /bin/bash```
|
||||
3. Copy the text from the Tags tab from the library website. It should begin with 'ollama run'
|
||||
4. Check model size. Models that can run in GPU memory perform the best.
|
||||
5. Use /bye to exit the terminal
|
||||
|
||||
### Litellm Ollama Configuration
|
||||
Add the below lines to the config to access the Ollama models
|
||||
```yaml
|
||||
- model_name: mixtral
|
||||
litellm_params:
|
||||
model: ollama/mixtral:8x7b-instruct-v0.1-q5_K_M
|
||||
api_base: http://ollama:11434
|
||||
stream: True
|
||||
- model_name: mistral
|
||||
litellm_params:
|
||||
model: ollama/mistral
|
||||
api_base: http://ollama:11434
|
||||
stream: True
|
||||
```
|
||||
|
||||
## Caching with Redis
|
||||
Litellm supports in-memory, redis, and s3 caching. Note: Caching currently only works with exact matching.
|
||||
|
||||
### Update docker-compose.override.yml to enable Redis
|
||||
Add the below service to your docker-compose.override.yml
|
||||
```yaml
|
||||
redis:
|
||||
image: redis:7-alpine
|
||||
command:
|
||||
- sh
|
||||
- -c # this is to evaluate the $REDIS_PASSWORD from the env
|
||||
- redis-server --appendonly yes --requirepass $$REDIS_PASSWORD ## $$ because of docker-compose
|
||||
environment:
|
||||
REDIS_PASSWORD: RedisChangeMe
|
||||
volumes:
|
||||
- ./redis:/data
|
||||
```
|
||||
|
||||
Add the following to the environment variables in the litellm service inside the docker-compose.override.yml
|
||||
```yaml
|
||||
litellm:
|
||||
image: ghcr.io/berriai/litellm:main-latest
|
||||
volumes:
|
||||
- ./litellm/litellm-config.yaml:/app/config.yaml
|
||||
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
|
||||
environment:
|
||||
REDIS_HOST: redis
|
||||
REDIS_PORT: 6379
|
||||
REDIS_PASSWORD: RedisChangeMe
|
||||
```
|
||||
|
||||
### Update Litellm Config File
|
||||
Add the below options to the litellm config file
|
||||
```yaml
|
||||
litellm_settings: # module level litellm settings - https://github.com/BerriAI/litellm/blob/main/litellm/__init__.py
|
||||
cache: True # set cache responses to True, litellm defaults to using a redis cache
|
||||
cache_params: # cache_params are optional
|
||||
type: "redis" # The type of cache to initialize. Can be "local" or "redis". Defaults to "local".
|
||||
|
||||
# Optional configurations
|
||||
supported_call_types: ["acompletion", "completion", "embedding", "aembedding"] # defaults to all litellm call types
|
||||
```
|
||||
|
||||
|
||||
## Performance Monitoring with Langfuse
|
||||
Litellm supports various logging and observability options. The settings below will enable Langfuse which will provide a cache_hit tag showing which conversations used cache.
|
||||
|
||||
### Update docker-compose.override.yml to enable Langfuse
|
||||
Langfuse requires a postgres database, so add both postgres and langfuse services to the docker-compose.override.yml
|
||||
```yaml
|
||||
langfuse-server:
|
||||
image: ghcr.io/langfuse/langfuse:latest
|
||||
depends_on:
|
||||
- db
|
||||
ports:
|
||||
- "3000:3000"
|
||||
environment:
|
||||
- NODE_ENV=production
|
||||
- DATABASE_URL=postgresql://postgres:PostgresChangeMe@db:5432/postgres
|
||||
- NEXTAUTH_SECRET=ChangeMe
|
||||
- SALT=ChangeMe
|
||||
- NEXTAUTH_URL=http://localhost:3000
|
||||
- TELEMETRY_ENABLED=${TELEMETRY_ENABLED:-true}
|
||||
- NEXT_PUBLIC_SIGN_UP_DISABLED=${NEXT_PUBLIC_SIGN_UP_DISABLED:-false}
|
||||
- LANGFUSE_ENABLE_EXPERIMENTAL_FEATURES=${LANGFUSE_ENABLE_EXPERIMENTAL_FEATURES:-false}
|
||||
|
||||
db:
|
||||
image: postgres
|
||||
restart: always
|
||||
environment:
|
||||
- POSTGRES_USER=postgres
|
||||
- POSTGRES_PASSWORD=PostgresChangeMe
|
||||
- POSTGRES_DB=postgres
|
||||
volumes:
|
||||
- ./postgres:/var/lib/postgresql/data
|
||||
```
|
||||
|
||||
Once Langfuse is running, create an account by accessing the web interface on port 3000. Create a new project to obtain the needed public and private key used by the litellm config
|
||||
Add environement variable within the litellm service within docker-compose.override.yml
|
||||
```yaml
|
||||
litellm:
|
||||
image: ghcr.io/berriai/litellm:main-latest
|
||||
ports:
|
||||
- "8000:8000"
|
||||
volumes:
|
||||
- /srv/litellm/config/litellm-config.yaml:/app/config.yaml
|
||||
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
|
||||
environment:
|
||||
LANGFUSE_PUBLIC_KEY: pk-lf-RandomStringFromLangfuseWebInterface
|
||||
LANGFUSE_SECRET_KEY: sk-lf-RandomStringFromLangfuseWebInterface
|
||||
LANGFUSE_HOST: http://langfuse-server:3000
|
||||
```
|
||||
|
||||
### Update litellm config file
|
||||
```yaml
|
||||
litellm_settings:
|
||||
success_callback: ["langfuse"]
|
||||
```
|
||||
Overall, LiteLLM Server offers a comprehensive suite of tools for managing, deploying, and interacting with a variety of LLMs, making it a versatile choice for large-scale AI applications.
|
29
docs/install/configuration/ollama.md
Normal file
29
docs/install/configuration/ollama.md
Normal file
|
@ -0,0 +1,29 @@
|
|||
---
|
||||
title: 🚅 Ollama
|
||||
description: Using LibreChat with Ollama
|
||||
weight: -6
|
||||
---
|
||||
## Ollama
|
||||
Use [Ollama](https://ollama.ai/) for
|
||||
|
||||
* Running large language models on local hardware
|
||||
* Hosting multiple models
|
||||
* Dynamically loading the model upon request
|
||||
|
||||
### 1. Install Ollama
|
||||
#### Mac, Linux, Windows Install
|
||||
Ollama supports GPU acceleration on Nvidia, AMD, and Apple Metal. Follow Instructions at [Ollama Download](https://ollama.com/download)
|
||||
|
||||
#### Docker Install
|
||||
Reference docker-compose.override.yml.example for configuration of Ollama in a Docker environment.
|
||||
|
||||
Run ```docker exec -it ollama /bin/bash``` to access the Ollama command within the container.
|
||||
|
||||
### 2. Load Models in Ollama
|
||||
1. Browse the available models at [Ollama Library](https://ollama.ai/library)
|
||||
2. Copy the text from the Tags tab from the library website and paste it into the terminal. It should begin with 'ollama run'
|
||||
3. Check model size. Models that can run in GPU memory perform the best.
|
||||
4. Use /bye to exit the terminal
|
||||
|
||||
### 3. Configure LibreChat
|
||||
Use `librechat.yaml` [Configuration file (guide here)](./ai_endpoints.md) to add Ollama as a separate endpoint.
|
Loading…
Add table
Add a link
Reference in a new issue