mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-18 01:10:14 +01:00
feat(experimental): FunctionsAgent, uses new function payload for tooling
This commit is contained in:
parent
550e566097
commit
3caddd6854
8 changed files with 227 additions and 52 deletions
122
api/app/langchain/agents/Functions/FunctionsAgent.js
Normal file
122
api/app/langchain/agents/Functions/FunctionsAgent.js
Normal file
|
|
@ -0,0 +1,122 @@
|
|||
const { Agent } = require('langchain/agents');
|
||||
const { LLMChain } = require('langchain/chains');
|
||||
const { FunctionChatMessage, AIChatMessage } = require('langchain/schema');
|
||||
const {
|
||||
ChatPromptTemplate,
|
||||
MessagesPlaceholder,
|
||||
SystemMessagePromptTemplate,
|
||||
HumanMessagePromptTemplate
|
||||
} = require('langchain/prompts');
|
||||
const PREFIX = `You are a helpful AI assistant. Objective: Understand the human's query with available functions.
|
||||
The user is expecting a function response to the query; if only part of the query involves a function, prioritize the function response.`;
|
||||
|
||||
function parseOutput(message) {
|
||||
if (message.additional_kwargs.function_call) {
|
||||
const function_call = message.additional_kwargs.function_call;
|
||||
return {
|
||||
tool: function_call.name,
|
||||
toolInput: function_call.arguments ? JSON.parse(function_call.arguments) : {},
|
||||
log: message.text
|
||||
};
|
||||
} else {
|
||||
return { returnValues: { output: message.text }, log: message.text };
|
||||
}
|
||||
}
|
||||
|
||||
class FunctionsAgent extends Agent {
|
||||
constructor(input) {
|
||||
super({ ...input, outputParser: undefined });
|
||||
this.tools = input.tools;
|
||||
}
|
||||
|
||||
lc_namespace = ['langchain', 'agents', 'openai'];
|
||||
|
||||
_agentType() {
|
||||
return 'openai-functions';
|
||||
}
|
||||
|
||||
observationPrefix() {
|
||||
return 'Observation: ';
|
||||
}
|
||||
|
||||
llmPrefix() {
|
||||
return 'Thought:';
|
||||
}
|
||||
|
||||
_stop() {
|
||||
return ['Observation:'];
|
||||
}
|
||||
|
||||
static createPrompt(_tools, fields) {
|
||||
const { prefix = PREFIX, currentDateString } = fields || {};
|
||||
|
||||
return ChatPromptTemplate.fromPromptMessages([
|
||||
SystemMessagePromptTemplate.fromTemplate(`Date: ${currentDateString}\n${prefix}`),
|
||||
HumanMessagePromptTemplate.fromTemplate(`{chat_history}
|
||||
Query: {input}
|
||||
{agent_scratchpad}`),
|
||||
new MessagesPlaceholder('agent_scratchpad')
|
||||
]);
|
||||
}
|
||||
|
||||
static fromLLMAndTools(llm, tools, args) {
|
||||
FunctionsAgent.validateTools(tools);
|
||||
const prompt = FunctionsAgent.createPrompt(tools, args);
|
||||
const chain = new LLMChain({
|
||||
prompt,
|
||||
llm,
|
||||
callbacks: args?.callbacks
|
||||
});
|
||||
return new FunctionsAgent({
|
||||
llmChain: chain,
|
||||
allowedTools: tools.map((t) => t.name),
|
||||
tools
|
||||
});
|
||||
}
|
||||
|
||||
async constructScratchPad(steps) {
|
||||
return steps.flatMap(({ action, observation }) => [
|
||||
new AIChatMessage('', {
|
||||
function_call: {
|
||||
name: action.tool,
|
||||
arguments: JSON.stringify(action.toolInput)
|
||||
}
|
||||
}),
|
||||
new FunctionChatMessage(observation, action.tool)
|
||||
]);
|
||||
}
|
||||
|
||||
async plan(steps, inputs, callbackManager) {
|
||||
// Add scratchpad and stop to inputs
|
||||
var thoughts = await this.constructScratchPad(steps);
|
||||
var newInputs = Object.assign({}, inputs, { agent_scratchpad: thoughts });
|
||||
if (this._stop().length !== 0) {
|
||||
newInputs.stop = this._stop();
|
||||
}
|
||||
|
||||
// Split inputs between prompt and llm
|
||||
var llm = this.llmChain.llm;
|
||||
var valuesForPrompt = Object.assign({}, newInputs);
|
||||
var valuesForLLM = {
|
||||
tools: this.tools
|
||||
};
|
||||
for (var i = 0; i < this.llmChain.llm.callKeys.length; i++) {
|
||||
var key = this.llmChain.llm.callKeys[i];
|
||||
if (key in inputs) {
|
||||
valuesForLLM[key] = inputs[key];
|
||||
delete valuesForPrompt[key];
|
||||
}
|
||||
}
|
||||
|
||||
var promptValue = await this.llmChain.prompt.formatPromptValue(valuesForPrompt);
|
||||
var message = await llm.predictMessages(
|
||||
promptValue.toChatMessages(),
|
||||
valuesForLLM,
|
||||
callbackManager
|
||||
);
|
||||
console.log('message', message);
|
||||
return parseOutput(message);
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = FunctionsAgent;
|
||||
Loading…
Add table
Add a link
Reference in a new issue