💰 fix: Multi-Agent Token Spending & Prevent Double-Spend (#11433)

* fix: Token Spending Logic for Multi-Agents on Abort Scenarios

* Implemented logic to skip token spending if a conversation is aborted, preventing double-spending.
* Introduced `spendCollectedUsage` function to handle token spending for multiple models during aborts, ensuring accurate accounting for parallel agents.
* Updated `GenerationJobManager` to store and retrieve collected usage data for improved abort handling.
* Added comprehensive tests for the new functionality, covering various scenarios including cache token handling and parallel agent usage.

* fix: Memory Context Handling for Multi-Agents

* Refactored `buildMessages` method to pass memory context to parallel agents, ensuring they share the same user context.
* Improved handling of memory context when no existing instructions are present for parallel agents.
* Added comprehensive tests to verify memory context propagation and behavior under various scenarios, including cases with no memory available and empty agent configurations.
* Enhanced logging for better traceability of memory context additions to agents.

* chore: Memory Context Documentation for Parallel Agents

* Updated documentation in the `AgentClient` class to clarify the in-place mutation of agentConfig objects when passing memory context to parallel agents.
* Added notes on the implications of mutating objects directly to ensure all parallel agents receive the correct memory context before execution.

* chore: UsageMetadata Interface docs for Token Spending

* Expanded the UsageMetadata interface to support both OpenAI and Anthropic cache token formats.
* Added detailed documentation for cache token properties, including mutually exclusive fields for different model types.
* Improved clarity on how to access cache token details for accurate token spending tracking.

* fix: Enhance Token Spending Logic in Abort Middleware

* Refactored `spendCollectedUsage` function to utilize Promise.all for concurrent token spending, improving performance and ensuring all operations complete before clearing the collectedUsage array.
* Added documentation to clarify the importance of clearing the collectedUsage array to prevent double-spending in abort scenarios.
* Updated tests to verify the correct behavior of the spending logic and the clearing of the array after spending operations.
This commit is contained in:
Danny Avila 2026-01-20 14:43:19 -05:00 committed by GitHub
parent 32e6f3b8e5
commit 36c5a88c4e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 1440 additions and 28 deletions

View file

@ -7,13 +7,89 @@ const {
sanitizeMessageForTransmit,
} = require('@librechat/api');
const { isAssistantsEndpoint, ErrorTypes } = require('librechat-data-provider');
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
const { truncateText, smartTruncateText } = require('~/app/clients/prompts');
const clearPendingReq = require('~/cache/clearPendingReq');
const { sendError } = require('~/server/middleware/error');
const { spendTokens } = require('~/models/spendTokens');
const { saveMessage, getConvo } = require('~/models');
const { abortRun } = require('./abortRun');
/**
* Spend tokens for all models from collected usage.
* This handles both sequential and parallel agent execution.
*
* IMPORTANT: After spending, this function clears the collectedUsage array
* to prevent double-spending. The array is shared with AgentClient.collectedUsage,
* so clearing it here prevents the finally block from also spending tokens.
*
* @param {Object} params
* @param {string} params.userId - User ID
* @param {string} params.conversationId - Conversation ID
* @param {Array<Object>} params.collectedUsage - Usage metadata from all models
* @param {string} [params.fallbackModel] - Fallback model name if not in usage
*/
async function spendCollectedUsage({ userId, conversationId, collectedUsage, fallbackModel }) {
if (!collectedUsage || collectedUsage.length === 0) {
return;
}
const spendPromises = [];
for (const usage of collectedUsage) {
if (!usage) {
continue;
}
// Support both OpenAI format (input_token_details) and Anthropic format (cache_*_input_tokens)
const cache_creation =
Number(usage.input_token_details?.cache_creation) ||
Number(usage.cache_creation_input_tokens) ||
0;
const cache_read =
Number(usage.input_token_details?.cache_read) || Number(usage.cache_read_input_tokens) || 0;
const txMetadata = {
context: 'abort',
conversationId,
user: userId,
model: usage.model ?? fallbackModel,
};
if (cache_creation > 0 || cache_read > 0) {
spendPromises.push(
spendStructuredTokens(txMetadata, {
promptTokens: {
input: usage.input_tokens,
write: cache_creation,
read: cache_read,
},
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error('[abortMiddleware] Error spending structured tokens for abort', err);
}),
);
continue;
}
spendPromises.push(
spendTokens(txMetadata, {
promptTokens: usage.input_tokens,
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error('[abortMiddleware] Error spending tokens for abort', err);
}),
);
}
// Wait for all token spending to complete
await Promise.all(spendPromises);
// Clear the array to prevent double-spending from the AgentClient finally block.
// The collectedUsage array is shared by reference with AgentClient.collectedUsage,
// so clearing it here ensures recordCollectedUsage() sees an empty array and returns early.
collectedUsage.length = 0;
}
/**
* Abort an active message generation.
* Uses GenerationJobManager for all agent requests.
@ -39,9 +115,8 @@ async function abortMessage(req, res) {
return;
}
const { jobData, content, text } = abortResult;
const { jobData, content, text, collectedUsage } = abortResult;
// Count tokens and spend them
const completionTokens = await countTokens(text);
const promptTokens = jobData?.promptTokens ?? 0;
@ -62,10 +137,21 @@ async function abortMessage(req, res) {
tokenCount: completionTokens,
};
await spendTokens(
{ ...responseMessage, context: 'incomplete', user: userId },
{ promptTokens, completionTokens },
);
// Spend tokens for ALL models from collectedUsage (handles parallel agents/addedConvo)
if (collectedUsage && collectedUsage.length > 0) {
await spendCollectedUsage({
userId,
conversationId: jobData?.conversationId,
collectedUsage,
fallbackModel: jobData?.model,
});
} else {
// Fallback: no collected usage, use text-based token counting for primary model only
await spendTokens(
{ ...responseMessage, context: 'incomplete', user: userId },
{ promptTokens, completionTokens },
);
}
await saveMessage(
req,