mirror of
https://github.com/danny-avila/LibreChat.git
synced 2026-01-22 18:26:12 +01:00
💰 fix: Multi-Agent Token Spending & Prevent Double-Spend (#11433)
* fix: Token Spending Logic for Multi-Agents on Abort Scenarios * Implemented logic to skip token spending if a conversation is aborted, preventing double-spending. * Introduced `spendCollectedUsage` function to handle token spending for multiple models during aborts, ensuring accurate accounting for parallel agents. * Updated `GenerationJobManager` to store and retrieve collected usage data for improved abort handling. * Added comprehensive tests for the new functionality, covering various scenarios including cache token handling and parallel agent usage. * fix: Memory Context Handling for Multi-Agents * Refactored `buildMessages` method to pass memory context to parallel agents, ensuring they share the same user context. * Improved handling of memory context when no existing instructions are present for parallel agents. * Added comprehensive tests to verify memory context propagation and behavior under various scenarios, including cases with no memory available and empty agent configurations. * Enhanced logging for better traceability of memory context additions to agents. * chore: Memory Context Documentation for Parallel Agents * Updated documentation in the `AgentClient` class to clarify the in-place mutation of agentConfig objects when passing memory context to parallel agents. * Added notes on the implications of mutating objects directly to ensure all parallel agents receive the correct memory context before execution. * chore: UsageMetadata Interface docs for Token Spending * Expanded the UsageMetadata interface to support both OpenAI and Anthropic cache token formats. * Added detailed documentation for cache token properties, including mutually exclusive fields for different model types. * Improved clarity on how to access cache token details for accurate token spending tracking. * fix: Enhance Token Spending Logic in Abort Middleware * Refactored `spendCollectedUsage` function to utilize Promise.all for concurrent token spending, improving performance and ensuring all operations complete before clearing the collectedUsage array. * Added documentation to clarify the importance of clearing the collectedUsage array to prevent double-spending in abort scenarios. * Updated tests to verify the correct behavior of the spending logic and the clearing of the array after spending operations.
This commit is contained in:
parent
32e6f3b8e5
commit
36c5a88c4e
11 changed files with 1440 additions and 28 deletions
|
|
@ -7,13 +7,89 @@ const {
|
|||
sanitizeMessageForTransmit,
|
||||
} = require('@librechat/api');
|
||||
const { isAssistantsEndpoint, ErrorTypes } = require('librechat-data-provider');
|
||||
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
|
||||
const { truncateText, smartTruncateText } = require('~/app/clients/prompts');
|
||||
const clearPendingReq = require('~/cache/clearPendingReq');
|
||||
const { sendError } = require('~/server/middleware/error');
|
||||
const { spendTokens } = require('~/models/spendTokens');
|
||||
const { saveMessage, getConvo } = require('~/models');
|
||||
const { abortRun } = require('./abortRun');
|
||||
|
||||
/**
|
||||
* Spend tokens for all models from collected usage.
|
||||
* This handles both sequential and parallel agent execution.
|
||||
*
|
||||
* IMPORTANT: After spending, this function clears the collectedUsage array
|
||||
* to prevent double-spending. The array is shared with AgentClient.collectedUsage,
|
||||
* so clearing it here prevents the finally block from also spending tokens.
|
||||
*
|
||||
* @param {Object} params
|
||||
* @param {string} params.userId - User ID
|
||||
* @param {string} params.conversationId - Conversation ID
|
||||
* @param {Array<Object>} params.collectedUsage - Usage metadata from all models
|
||||
* @param {string} [params.fallbackModel] - Fallback model name if not in usage
|
||||
*/
|
||||
async function spendCollectedUsage({ userId, conversationId, collectedUsage, fallbackModel }) {
|
||||
if (!collectedUsage || collectedUsage.length === 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const spendPromises = [];
|
||||
|
||||
for (const usage of collectedUsage) {
|
||||
if (!usage) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Support both OpenAI format (input_token_details) and Anthropic format (cache_*_input_tokens)
|
||||
const cache_creation =
|
||||
Number(usage.input_token_details?.cache_creation) ||
|
||||
Number(usage.cache_creation_input_tokens) ||
|
||||
0;
|
||||
const cache_read =
|
||||
Number(usage.input_token_details?.cache_read) || Number(usage.cache_read_input_tokens) || 0;
|
||||
|
||||
const txMetadata = {
|
||||
context: 'abort',
|
||||
conversationId,
|
||||
user: userId,
|
||||
model: usage.model ?? fallbackModel,
|
||||
};
|
||||
|
||||
if (cache_creation > 0 || cache_read > 0) {
|
||||
spendPromises.push(
|
||||
spendStructuredTokens(txMetadata, {
|
||||
promptTokens: {
|
||||
input: usage.input_tokens,
|
||||
write: cache_creation,
|
||||
read: cache_read,
|
||||
},
|
||||
completionTokens: usage.output_tokens,
|
||||
}).catch((err) => {
|
||||
logger.error('[abortMiddleware] Error spending structured tokens for abort', err);
|
||||
}),
|
||||
);
|
||||
continue;
|
||||
}
|
||||
|
||||
spendPromises.push(
|
||||
spendTokens(txMetadata, {
|
||||
promptTokens: usage.input_tokens,
|
||||
completionTokens: usage.output_tokens,
|
||||
}).catch((err) => {
|
||||
logger.error('[abortMiddleware] Error spending tokens for abort', err);
|
||||
}),
|
||||
);
|
||||
}
|
||||
|
||||
// Wait for all token spending to complete
|
||||
await Promise.all(spendPromises);
|
||||
|
||||
// Clear the array to prevent double-spending from the AgentClient finally block.
|
||||
// The collectedUsage array is shared by reference with AgentClient.collectedUsage,
|
||||
// so clearing it here ensures recordCollectedUsage() sees an empty array and returns early.
|
||||
collectedUsage.length = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Abort an active message generation.
|
||||
* Uses GenerationJobManager for all agent requests.
|
||||
|
|
@ -39,9 +115,8 @@ async function abortMessage(req, res) {
|
|||
return;
|
||||
}
|
||||
|
||||
const { jobData, content, text } = abortResult;
|
||||
const { jobData, content, text, collectedUsage } = abortResult;
|
||||
|
||||
// Count tokens and spend them
|
||||
const completionTokens = await countTokens(text);
|
||||
const promptTokens = jobData?.promptTokens ?? 0;
|
||||
|
||||
|
|
@ -62,10 +137,21 @@ async function abortMessage(req, res) {
|
|||
tokenCount: completionTokens,
|
||||
};
|
||||
|
||||
await spendTokens(
|
||||
{ ...responseMessage, context: 'incomplete', user: userId },
|
||||
{ promptTokens, completionTokens },
|
||||
);
|
||||
// Spend tokens for ALL models from collectedUsage (handles parallel agents/addedConvo)
|
||||
if (collectedUsage && collectedUsage.length > 0) {
|
||||
await spendCollectedUsage({
|
||||
userId,
|
||||
conversationId: jobData?.conversationId,
|
||||
collectedUsage,
|
||||
fallbackModel: jobData?.model,
|
||||
});
|
||||
} else {
|
||||
// Fallback: no collected usage, use text-based token counting for primary model only
|
||||
await spendTokens(
|
||||
{ ...responseMessage, context: 'incomplete', user: userId },
|
||||
{ promptTokens, completionTokens },
|
||||
);
|
||||
}
|
||||
|
||||
await saveMessage(
|
||||
req,
|
||||
|
|
|
|||
428
api/server/middleware/abortMiddleware.spec.js
Normal file
428
api/server/middleware/abortMiddleware.spec.js
Normal file
|
|
@ -0,0 +1,428 @@
|
|||
/**
|
||||
* Tests for abortMiddleware - spendCollectedUsage function
|
||||
*
|
||||
* This tests the token spending logic for abort scenarios,
|
||||
* particularly for parallel agents (addedConvo) where multiple
|
||||
* models need their tokens spent.
|
||||
*/
|
||||
|
||||
const mockSpendTokens = jest.fn().mockResolvedValue();
|
||||
const mockSpendStructuredTokens = jest.fn().mockResolvedValue();
|
||||
|
||||
jest.mock('~/models/spendTokens', () => ({
|
||||
spendTokens: (...args) => mockSpendTokens(...args),
|
||||
spendStructuredTokens: (...args) => mockSpendStructuredTokens(...args),
|
||||
}));
|
||||
|
||||
jest.mock('@librechat/data-schemas', () => ({
|
||||
logger: {
|
||||
debug: jest.fn(),
|
||||
error: jest.fn(),
|
||||
warn: jest.fn(),
|
||||
info: jest.fn(),
|
||||
},
|
||||
}));
|
||||
|
||||
jest.mock('@librechat/api', () => ({
|
||||
countTokens: jest.fn().mockResolvedValue(100),
|
||||
isEnabled: jest.fn().mockReturnValue(false),
|
||||
sendEvent: jest.fn(),
|
||||
GenerationJobManager: {
|
||||
abortJob: jest.fn(),
|
||||
},
|
||||
sanitizeMessageForTransmit: jest.fn((msg) => msg),
|
||||
}));
|
||||
|
||||
jest.mock('librechat-data-provider', () => ({
|
||||
isAssistantsEndpoint: jest.fn().mockReturnValue(false),
|
||||
ErrorTypes: { INVALID_REQUEST: 'INVALID_REQUEST', NO_SYSTEM_MESSAGES: 'NO_SYSTEM_MESSAGES' },
|
||||
}));
|
||||
|
||||
jest.mock('~/app/clients/prompts', () => ({
|
||||
truncateText: jest.fn((text) => text),
|
||||
smartTruncateText: jest.fn((text) => text),
|
||||
}));
|
||||
|
||||
jest.mock('~/cache/clearPendingReq', () => jest.fn().mockResolvedValue());
|
||||
|
||||
jest.mock('~/server/middleware/error', () => ({
|
||||
sendError: jest.fn(),
|
||||
}));
|
||||
|
||||
jest.mock('~/models', () => ({
|
||||
saveMessage: jest.fn().mockResolvedValue(),
|
||||
getConvo: jest.fn().mockResolvedValue({ title: 'Test Chat' }),
|
||||
}));
|
||||
|
||||
jest.mock('./abortRun', () => ({
|
||||
abortRun: jest.fn(),
|
||||
}));
|
||||
|
||||
// Import the module after mocks are set up
|
||||
// We need to extract the spendCollectedUsage function for testing
|
||||
// Since it's not exported, we'll test it through the handleAbort flow
|
||||
|
||||
describe('abortMiddleware - spendCollectedUsage', () => {
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks();
|
||||
});
|
||||
|
||||
describe('spendCollectedUsage logic', () => {
|
||||
// Since spendCollectedUsage is not exported, we test the logic directly
|
||||
// by replicating the function here for unit testing
|
||||
|
||||
const spendCollectedUsage = async ({
|
||||
userId,
|
||||
conversationId,
|
||||
collectedUsage,
|
||||
fallbackModel,
|
||||
}) => {
|
||||
if (!collectedUsage || collectedUsage.length === 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const spendPromises = [];
|
||||
|
||||
for (const usage of collectedUsage) {
|
||||
if (!usage) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const cache_creation =
|
||||
Number(usage.input_token_details?.cache_creation) ||
|
||||
Number(usage.cache_creation_input_tokens) ||
|
||||
0;
|
||||
const cache_read =
|
||||
Number(usage.input_token_details?.cache_read) ||
|
||||
Number(usage.cache_read_input_tokens) ||
|
||||
0;
|
||||
|
||||
const txMetadata = {
|
||||
context: 'abort',
|
||||
conversationId,
|
||||
user: userId,
|
||||
model: usage.model ?? fallbackModel,
|
||||
};
|
||||
|
||||
if (cache_creation > 0 || cache_read > 0) {
|
||||
spendPromises.push(
|
||||
mockSpendStructuredTokens(txMetadata, {
|
||||
promptTokens: {
|
||||
input: usage.input_tokens,
|
||||
write: cache_creation,
|
||||
read: cache_read,
|
||||
},
|
||||
completionTokens: usage.output_tokens,
|
||||
}).catch(() => {
|
||||
// Log error but don't throw
|
||||
}),
|
||||
);
|
||||
continue;
|
||||
}
|
||||
|
||||
spendPromises.push(
|
||||
mockSpendTokens(txMetadata, {
|
||||
promptTokens: usage.input_tokens,
|
||||
completionTokens: usage.output_tokens,
|
||||
}).catch(() => {
|
||||
// Log error but don't throw
|
||||
}),
|
||||
);
|
||||
}
|
||||
|
||||
// Wait for all token spending to complete
|
||||
await Promise.all(spendPromises);
|
||||
|
||||
// Clear the array to prevent double-spending
|
||||
collectedUsage.length = 0;
|
||||
};
|
||||
|
||||
it('should return early if collectedUsage is empty', async () => {
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage: [],
|
||||
fallbackModel: 'gpt-4',
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).not.toHaveBeenCalled();
|
||||
expect(mockSpendStructuredTokens).not.toHaveBeenCalled();
|
||||
});
|
||||
|
||||
it('should return early if collectedUsage is null', async () => {
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage: null,
|
||||
fallbackModel: 'gpt-4',
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).not.toHaveBeenCalled();
|
||||
expect(mockSpendStructuredTokens).not.toHaveBeenCalled();
|
||||
});
|
||||
|
||||
it('should skip null entries in collectedUsage', async () => {
|
||||
const collectedUsage = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
null,
|
||||
{ input_tokens: 200, output_tokens: 60, model: 'gpt-4' },
|
||||
];
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'gpt-4',
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
|
||||
});
|
||||
|
||||
it('should spend tokens for single model', async () => {
|
||||
const collectedUsage = [{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' }];
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'gpt-4',
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(1);
|
||||
expect(mockSpendTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
context: 'abort',
|
||||
conversationId: 'convo-123',
|
||||
user: 'user-123',
|
||||
model: 'gpt-4',
|
||||
}),
|
||||
{ promptTokens: 100, completionTokens: 50 },
|
||||
);
|
||||
});
|
||||
|
||||
it('should spend tokens for multiple models (parallel agents)', async () => {
|
||||
const collectedUsage = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
|
||||
{ input_tokens: 120, output_tokens: 60, model: 'gemini-pro' },
|
||||
];
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'gpt-4',
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(3);
|
||||
|
||||
// Verify each model was called
|
||||
expect(mockSpendTokens).toHaveBeenNthCalledWith(
|
||||
1,
|
||||
expect.objectContaining({ model: 'gpt-4' }),
|
||||
{ promptTokens: 100, completionTokens: 50 },
|
||||
);
|
||||
expect(mockSpendTokens).toHaveBeenNthCalledWith(
|
||||
2,
|
||||
expect.objectContaining({ model: 'claude-3' }),
|
||||
{ promptTokens: 80, completionTokens: 40 },
|
||||
);
|
||||
expect(mockSpendTokens).toHaveBeenNthCalledWith(
|
||||
3,
|
||||
expect.objectContaining({ model: 'gemini-pro' }),
|
||||
{ promptTokens: 120, completionTokens: 60 },
|
||||
);
|
||||
});
|
||||
|
||||
it('should use fallbackModel when usage.model is missing', async () => {
|
||||
const collectedUsage = [{ input_tokens: 100, output_tokens: 50 }];
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'fallback-model',
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({ model: 'fallback-model' }),
|
||||
expect.any(Object),
|
||||
);
|
||||
});
|
||||
|
||||
it('should use spendStructuredTokens for OpenAI format cache tokens', async () => {
|
||||
const collectedUsage = [
|
||||
{
|
||||
input_tokens: 100,
|
||||
output_tokens: 50,
|
||||
model: 'gpt-4',
|
||||
input_token_details: {
|
||||
cache_creation: 20,
|
||||
cache_read: 10,
|
||||
},
|
||||
},
|
||||
];
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'gpt-4',
|
||||
});
|
||||
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
|
||||
expect(mockSpendTokens).not.toHaveBeenCalled();
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({ model: 'gpt-4', context: 'abort' }),
|
||||
{
|
||||
promptTokens: {
|
||||
input: 100,
|
||||
write: 20,
|
||||
read: 10,
|
||||
},
|
||||
completionTokens: 50,
|
||||
},
|
||||
);
|
||||
});
|
||||
|
||||
it('should use spendStructuredTokens for Anthropic format cache tokens', async () => {
|
||||
const collectedUsage = [
|
||||
{
|
||||
input_tokens: 100,
|
||||
output_tokens: 50,
|
||||
model: 'claude-3',
|
||||
cache_creation_input_tokens: 25,
|
||||
cache_read_input_tokens: 15,
|
||||
},
|
||||
];
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'claude-3',
|
||||
});
|
||||
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
|
||||
expect(mockSpendTokens).not.toHaveBeenCalled();
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledWith(
|
||||
expect.objectContaining({ model: 'claude-3' }),
|
||||
{
|
||||
promptTokens: {
|
||||
input: 100,
|
||||
write: 25,
|
||||
read: 15,
|
||||
},
|
||||
completionTokens: 50,
|
||||
},
|
||||
);
|
||||
});
|
||||
|
||||
it('should handle mixed cache and non-cache entries', async () => {
|
||||
const collectedUsage = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
{
|
||||
input_tokens: 150,
|
||||
output_tokens: 30,
|
||||
model: 'claude-3',
|
||||
cache_creation_input_tokens: 20,
|
||||
cache_read_input_tokens: 10,
|
||||
},
|
||||
{ input_tokens: 200, output_tokens: 20, model: 'gemini-pro' },
|
||||
];
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'gpt-4',
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
|
||||
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
|
||||
});
|
||||
|
||||
it('should handle real-world parallel agent abort scenario', async () => {
|
||||
// Simulates: Primary agent (gemini) + addedConvo agent (gpt-5) aborted mid-stream
|
||||
const collectedUsage = [
|
||||
{ input_tokens: 31596, output_tokens: 151, model: 'gemini-3-flash-preview' },
|
||||
{ input_tokens: 28000, output_tokens: 120, model: 'gpt-5.2' },
|
||||
];
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'gemini-3-flash-preview',
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
|
||||
|
||||
// Primary model
|
||||
expect(mockSpendTokens).toHaveBeenNthCalledWith(
|
||||
1,
|
||||
expect.objectContaining({ model: 'gemini-3-flash-preview' }),
|
||||
{ promptTokens: 31596, completionTokens: 151 },
|
||||
);
|
||||
|
||||
// Parallel model (addedConvo)
|
||||
expect(mockSpendTokens).toHaveBeenNthCalledWith(
|
||||
2,
|
||||
expect.objectContaining({ model: 'gpt-5.2' }),
|
||||
{ promptTokens: 28000, completionTokens: 120 },
|
||||
);
|
||||
});
|
||||
|
||||
it('should clear collectedUsage array after spending to prevent double-spending', async () => {
|
||||
// This tests the race condition fix: after abort middleware spends tokens,
|
||||
// the collectedUsage array is cleared so AgentClient.recordCollectedUsage()
|
||||
// (which shares the same array reference) sees an empty array and returns early.
|
||||
const collectedUsage = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
|
||||
];
|
||||
|
||||
expect(collectedUsage.length).toBe(2);
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'gpt-4',
|
||||
});
|
||||
|
||||
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
|
||||
|
||||
// The array should be cleared after spending
|
||||
expect(collectedUsage.length).toBe(0);
|
||||
});
|
||||
|
||||
it('should await all token spending operations before clearing array', async () => {
|
||||
// Ensure we don't clear the array before spending completes
|
||||
let spendCallCount = 0;
|
||||
mockSpendTokens.mockImplementation(async () => {
|
||||
spendCallCount++;
|
||||
// Simulate async delay
|
||||
await new Promise((resolve) => setTimeout(resolve, 10));
|
||||
});
|
||||
|
||||
const collectedUsage = [
|
||||
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
|
||||
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
|
||||
];
|
||||
|
||||
await spendCollectedUsage({
|
||||
userId: 'user-123',
|
||||
conversationId: 'convo-123',
|
||||
collectedUsage,
|
||||
fallbackModel: 'gpt-4',
|
||||
});
|
||||
|
||||
// Both spend calls should have completed
|
||||
expect(spendCallCount).toBe(2);
|
||||
|
||||
// Array should be cleared after awaiting
|
||||
expect(collectedUsage.length).toBe(0);
|
||||
});
|
||||
});
|
||||
});
|
||||
Loading…
Add table
Add a link
Reference in a new issue