💰 fix: Multi-Agent Token Spending & Prevent Double-Spend (#11433)

* fix: Token Spending Logic for Multi-Agents on Abort Scenarios

* Implemented logic to skip token spending if a conversation is aborted, preventing double-spending.
* Introduced `spendCollectedUsage` function to handle token spending for multiple models during aborts, ensuring accurate accounting for parallel agents.
* Updated `GenerationJobManager` to store and retrieve collected usage data for improved abort handling.
* Added comprehensive tests for the new functionality, covering various scenarios including cache token handling and parallel agent usage.

* fix: Memory Context Handling for Multi-Agents

* Refactored `buildMessages` method to pass memory context to parallel agents, ensuring they share the same user context.
* Improved handling of memory context when no existing instructions are present for parallel agents.
* Added comprehensive tests to verify memory context propagation and behavior under various scenarios, including cases with no memory available and empty agent configurations.
* Enhanced logging for better traceability of memory context additions to agents.

* chore: Memory Context Documentation for Parallel Agents

* Updated documentation in the `AgentClient` class to clarify the in-place mutation of agentConfig objects when passing memory context to parallel agents.
* Added notes on the implications of mutating objects directly to ensure all parallel agents receive the correct memory context before execution.

* chore: UsageMetadata Interface docs for Token Spending

* Expanded the UsageMetadata interface to support both OpenAI and Anthropic cache token formats.
* Added detailed documentation for cache token properties, including mutually exclusive fields for different model types.
* Improved clarity on how to access cache token details for accurate token spending tracking.

* fix: Enhance Token Spending Logic in Abort Middleware

* Refactored `spendCollectedUsage` function to utilize Promise.all for concurrent token spending, improving performance and ensuring all operations complete before clearing the collectedUsage array.
* Added documentation to clarify the importance of clearing the collectedUsage array to prevent double-spending in abort scenarios.
* Updated tests to verify the correct behavior of the spending logic and the clearing of the array after spending operations.
This commit is contained in:
Danny Avila 2026-01-20 14:43:19 -05:00 committed by GitHub
parent 32e6f3b8e5
commit 36c5a88c4e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 1440 additions and 28 deletions

View file

@ -522,14 +522,36 @@ class AgentClient extends BaseClient {
}
const withoutKeys = await this.useMemory();
if (withoutKeys) {
systemContent += `${memoryInstructions}\n\n# Existing memory about the user:\n${withoutKeys}`;
const memoryContext = withoutKeys
? `${memoryInstructions}\n\n# Existing memory about the user:\n${withoutKeys}`
: '';
if (memoryContext) {
systemContent += memoryContext;
}
if (systemContent) {
this.options.agent.instructions = systemContent;
}
/**
* Pass memory context to parallel agents (addedConvo) so they have the same user context.
*
* NOTE: This intentionally mutates the agentConfig objects in place. The agentConfigs Map
* holds references to config objects that will be passed to the graph runtime. Mutating
* them here ensures all parallel agents receive the memory context before execution starts.
* Creating new objects would not work because the Map references would still point to the old objects.
*/
if (memoryContext && this.agentConfigs?.size > 0) {
for (const [agentId, agentConfig] of this.agentConfigs.entries()) {
if (agentConfig.instructions) {
agentConfig.instructions = agentConfig.instructions + '\n\n' + memoryContext;
} else {
agentConfig.instructions = memoryContext;
}
logger.debug(`[AgentClient] Added memory context to parallel agent: ${agentId}`);
}
}
return result;
}
@ -1084,11 +1106,20 @@ class AgentClient extends BaseClient {
this.artifactPromises.push(...attachments);
}
await this.recordCollectedUsage({
context: 'message',
balance: balanceConfig,
transactions: transactionsConfig,
});
/** Skip token spending if aborted - the abort handler (abortMiddleware.js) handles it
This prevents double-spending when user aborts via `/api/agents/chat/abort` */
const wasAborted = abortController?.signal?.aborted;
if (!wasAborted) {
await this.recordCollectedUsage({
context: 'message',
balance: balanceConfig,
transactions: transactionsConfig,
});
} else {
logger.debug(
'[api/server/controllers/agents/client.js #chatCompletion] Skipping token spending - handled by abort middleware',
);
}
} catch (err) {
logger.error(
'[api/server/controllers/agents/client.js #chatCompletion] Error in cleanup phase',

View file

@ -1849,4 +1849,224 @@ describe('AgentClient - titleConvo', () => {
});
});
});
describe('buildMessages - memory context for parallel agents', () => {
let client;
let mockReq;
let mockRes;
let mockAgent;
let mockOptions;
beforeEach(() => {
jest.clearAllMocks();
mockAgent = {
id: 'primary-agent',
name: 'Primary Agent',
endpoint: EModelEndpoint.openAI,
provider: EModelEndpoint.openAI,
instructions: 'Primary agent instructions',
model_parameters: {
model: 'gpt-4',
},
tools: [],
};
mockReq = {
user: {
id: 'user-123',
personalization: {
memories: true,
},
},
body: {
endpoint: EModelEndpoint.openAI,
},
config: {
memory: {
disabled: false,
},
},
};
mockRes = {};
mockOptions = {
req: mockReq,
res: mockRes,
agent: mockAgent,
endpoint: EModelEndpoint.agents,
};
client = new AgentClient(mockOptions);
client.conversationId = 'convo-123';
client.responseMessageId = 'response-123';
client.shouldSummarize = false;
client.maxContextTokens = 4096;
});
it('should pass memory context to parallel agents (addedConvo)', async () => {
const memoryContent = 'User prefers dark mode. User is a software developer.';
client.useMemory = jest.fn().mockResolvedValue(memoryContent);
const parallelAgent1 = {
id: 'parallel-agent-1',
name: 'Parallel Agent 1',
instructions: 'Parallel agent 1 instructions',
provider: EModelEndpoint.openAI,
};
const parallelAgent2 = {
id: 'parallel-agent-2',
name: 'Parallel Agent 2',
instructions: 'Parallel agent 2 instructions',
provider: EModelEndpoint.anthropic,
};
client.agentConfigs = new Map([
['parallel-agent-1', parallelAgent1],
['parallel-agent-2', parallelAgent2],
]);
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await client.buildMessages(messages, null, {
instructions: 'Base instructions',
additional_instructions: null,
});
expect(client.useMemory).toHaveBeenCalled();
expect(client.options.agent.instructions).toContain('Base instructions');
expect(client.options.agent.instructions).toContain(memoryContent);
expect(parallelAgent1.instructions).toContain('Parallel agent 1 instructions');
expect(parallelAgent1.instructions).toContain(memoryContent);
expect(parallelAgent2.instructions).toContain('Parallel agent 2 instructions');
expect(parallelAgent2.instructions).toContain(memoryContent);
});
it('should not modify parallel agents when no memory context is available', async () => {
client.useMemory = jest.fn().mockResolvedValue(undefined);
const parallelAgent = {
id: 'parallel-agent-1',
name: 'Parallel Agent 1',
instructions: 'Original parallel instructions',
provider: EModelEndpoint.openAI,
};
client.agentConfigs = new Map([['parallel-agent-1', parallelAgent]]);
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await client.buildMessages(messages, null, {
instructions: 'Base instructions',
additional_instructions: null,
});
expect(parallelAgent.instructions).toBe('Original parallel instructions');
});
it('should handle parallel agents without existing instructions', async () => {
const memoryContent = 'User is a data scientist.';
client.useMemory = jest.fn().mockResolvedValue(memoryContent);
const parallelAgentNoInstructions = {
id: 'parallel-agent-no-instructions',
name: 'Parallel Agent No Instructions',
provider: EModelEndpoint.openAI,
};
client.agentConfigs = new Map([
['parallel-agent-no-instructions', parallelAgentNoInstructions],
]);
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await client.buildMessages(messages, null, {
instructions: null,
additional_instructions: null,
});
expect(parallelAgentNoInstructions.instructions).toContain(memoryContent);
});
it('should not modify agentConfigs when none exist', async () => {
const memoryContent = 'User prefers concise responses.';
client.useMemory = jest.fn().mockResolvedValue(memoryContent);
client.agentConfigs = null;
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await expect(
client.buildMessages(messages, null, {
instructions: 'Base instructions',
additional_instructions: null,
}),
).resolves.not.toThrow();
expect(client.options.agent.instructions).toContain(memoryContent);
});
it('should handle empty agentConfigs map', async () => {
const memoryContent = 'User likes detailed explanations.';
client.useMemory = jest.fn().mockResolvedValue(memoryContent);
client.agentConfigs = new Map();
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await expect(
client.buildMessages(messages, null, {
instructions: 'Base instructions',
additional_instructions: null,
}),
).resolves.not.toThrow();
expect(client.options.agent.instructions).toContain(memoryContent);
});
});
});