💰 fix: Multi-Agent Token Spending & Prevent Double-Spend (#11433)

* fix: Token Spending Logic for Multi-Agents on Abort Scenarios

* Implemented logic to skip token spending if a conversation is aborted, preventing double-spending.
* Introduced `spendCollectedUsage` function to handle token spending for multiple models during aborts, ensuring accurate accounting for parallel agents.
* Updated `GenerationJobManager` to store and retrieve collected usage data for improved abort handling.
* Added comprehensive tests for the new functionality, covering various scenarios including cache token handling and parallel agent usage.

* fix: Memory Context Handling for Multi-Agents

* Refactored `buildMessages` method to pass memory context to parallel agents, ensuring they share the same user context.
* Improved handling of memory context when no existing instructions are present for parallel agents.
* Added comprehensive tests to verify memory context propagation and behavior under various scenarios, including cases with no memory available and empty agent configurations.
* Enhanced logging for better traceability of memory context additions to agents.

* chore: Memory Context Documentation for Parallel Agents

* Updated documentation in the `AgentClient` class to clarify the in-place mutation of agentConfig objects when passing memory context to parallel agents.
* Added notes on the implications of mutating objects directly to ensure all parallel agents receive the correct memory context before execution.

* chore: UsageMetadata Interface docs for Token Spending

* Expanded the UsageMetadata interface to support both OpenAI and Anthropic cache token formats.
* Added detailed documentation for cache token properties, including mutually exclusive fields for different model types.
* Improved clarity on how to access cache token details for accurate token spending tracking.

* fix: Enhance Token Spending Logic in Abort Middleware

* Refactored `spendCollectedUsage` function to utilize Promise.all for concurrent token spending, improving performance and ensuring all operations complete before clearing the collectedUsage array.
* Added documentation to clarify the importance of clearing the collectedUsage array to prevent double-spending in abort scenarios.
* Updated tests to verify the correct behavior of the spending logic and the clearing of the array after spending operations.
This commit is contained in:
Danny Avila 2026-01-20 14:43:19 -05:00 committed by GitHub
parent 32e6f3b8e5
commit 36c5a88c4e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 1440 additions and 28 deletions

View file

@ -522,14 +522,36 @@ class AgentClient extends BaseClient {
}
const withoutKeys = await this.useMemory();
if (withoutKeys) {
systemContent += `${memoryInstructions}\n\n# Existing memory about the user:\n${withoutKeys}`;
const memoryContext = withoutKeys
? `${memoryInstructions}\n\n# Existing memory about the user:\n${withoutKeys}`
: '';
if (memoryContext) {
systemContent += memoryContext;
}
if (systemContent) {
this.options.agent.instructions = systemContent;
}
/**
* Pass memory context to parallel agents (addedConvo) so they have the same user context.
*
* NOTE: This intentionally mutates the agentConfig objects in place. The agentConfigs Map
* holds references to config objects that will be passed to the graph runtime. Mutating
* them here ensures all parallel agents receive the memory context before execution starts.
* Creating new objects would not work because the Map references would still point to the old objects.
*/
if (memoryContext && this.agentConfigs?.size > 0) {
for (const [agentId, agentConfig] of this.agentConfigs.entries()) {
if (agentConfig.instructions) {
agentConfig.instructions = agentConfig.instructions + '\n\n' + memoryContext;
} else {
agentConfig.instructions = memoryContext;
}
logger.debug(`[AgentClient] Added memory context to parallel agent: ${agentId}`);
}
}
return result;
}
@ -1084,11 +1106,20 @@ class AgentClient extends BaseClient {
this.artifactPromises.push(...attachments);
}
await this.recordCollectedUsage({
context: 'message',
balance: balanceConfig,
transactions: transactionsConfig,
});
/** Skip token spending if aborted - the abort handler (abortMiddleware.js) handles it
This prevents double-spending when user aborts via `/api/agents/chat/abort` */
const wasAborted = abortController?.signal?.aborted;
if (!wasAborted) {
await this.recordCollectedUsage({
context: 'message',
balance: balanceConfig,
transactions: transactionsConfig,
});
} else {
logger.debug(
'[api/server/controllers/agents/client.js #chatCompletion] Skipping token spending - handled by abort middleware',
);
}
} catch (err) {
logger.error(
'[api/server/controllers/agents/client.js #chatCompletion] Error in cleanup phase',

View file

@ -1849,4 +1849,224 @@ describe('AgentClient - titleConvo', () => {
});
});
});
describe('buildMessages - memory context for parallel agents', () => {
let client;
let mockReq;
let mockRes;
let mockAgent;
let mockOptions;
beforeEach(() => {
jest.clearAllMocks();
mockAgent = {
id: 'primary-agent',
name: 'Primary Agent',
endpoint: EModelEndpoint.openAI,
provider: EModelEndpoint.openAI,
instructions: 'Primary agent instructions',
model_parameters: {
model: 'gpt-4',
},
tools: [],
};
mockReq = {
user: {
id: 'user-123',
personalization: {
memories: true,
},
},
body: {
endpoint: EModelEndpoint.openAI,
},
config: {
memory: {
disabled: false,
},
},
};
mockRes = {};
mockOptions = {
req: mockReq,
res: mockRes,
agent: mockAgent,
endpoint: EModelEndpoint.agents,
};
client = new AgentClient(mockOptions);
client.conversationId = 'convo-123';
client.responseMessageId = 'response-123';
client.shouldSummarize = false;
client.maxContextTokens = 4096;
});
it('should pass memory context to parallel agents (addedConvo)', async () => {
const memoryContent = 'User prefers dark mode. User is a software developer.';
client.useMemory = jest.fn().mockResolvedValue(memoryContent);
const parallelAgent1 = {
id: 'parallel-agent-1',
name: 'Parallel Agent 1',
instructions: 'Parallel agent 1 instructions',
provider: EModelEndpoint.openAI,
};
const parallelAgent2 = {
id: 'parallel-agent-2',
name: 'Parallel Agent 2',
instructions: 'Parallel agent 2 instructions',
provider: EModelEndpoint.anthropic,
};
client.agentConfigs = new Map([
['parallel-agent-1', parallelAgent1],
['parallel-agent-2', parallelAgent2],
]);
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await client.buildMessages(messages, null, {
instructions: 'Base instructions',
additional_instructions: null,
});
expect(client.useMemory).toHaveBeenCalled();
expect(client.options.agent.instructions).toContain('Base instructions');
expect(client.options.agent.instructions).toContain(memoryContent);
expect(parallelAgent1.instructions).toContain('Parallel agent 1 instructions');
expect(parallelAgent1.instructions).toContain(memoryContent);
expect(parallelAgent2.instructions).toContain('Parallel agent 2 instructions');
expect(parallelAgent2.instructions).toContain(memoryContent);
});
it('should not modify parallel agents when no memory context is available', async () => {
client.useMemory = jest.fn().mockResolvedValue(undefined);
const parallelAgent = {
id: 'parallel-agent-1',
name: 'Parallel Agent 1',
instructions: 'Original parallel instructions',
provider: EModelEndpoint.openAI,
};
client.agentConfigs = new Map([['parallel-agent-1', parallelAgent]]);
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await client.buildMessages(messages, null, {
instructions: 'Base instructions',
additional_instructions: null,
});
expect(parallelAgent.instructions).toBe('Original parallel instructions');
});
it('should handle parallel agents without existing instructions', async () => {
const memoryContent = 'User is a data scientist.';
client.useMemory = jest.fn().mockResolvedValue(memoryContent);
const parallelAgentNoInstructions = {
id: 'parallel-agent-no-instructions',
name: 'Parallel Agent No Instructions',
provider: EModelEndpoint.openAI,
};
client.agentConfigs = new Map([
['parallel-agent-no-instructions', parallelAgentNoInstructions],
]);
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await client.buildMessages(messages, null, {
instructions: null,
additional_instructions: null,
});
expect(parallelAgentNoInstructions.instructions).toContain(memoryContent);
});
it('should not modify agentConfigs when none exist', async () => {
const memoryContent = 'User prefers concise responses.';
client.useMemory = jest.fn().mockResolvedValue(memoryContent);
client.agentConfigs = null;
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await expect(
client.buildMessages(messages, null, {
instructions: 'Base instructions',
additional_instructions: null,
}),
).resolves.not.toThrow();
expect(client.options.agent.instructions).toContain(memoryContent);
});
it('should handle empty agentConfigs map', async () => {
const memoryContent = 'User likes detailed explanations.';
client.useMemory = jest.fn().mockResolvedValue(memoryContent);
client.agentConfigs = new Map();
const messages = [
{
messageId: 'msg-1',
parentMessageId: null,
sender: 'User',
text: 'Hello',
isCreatedByUser: true,
},
];
await expect(
client.buildMessages(messages, null, {
instructions: 'Base instructions',
additional_instructions: null,
}),
).resolves.not.toThrow();
expect(client.options.agent.instructions).toContain(memoryContent);
});
});
});

View file

@ -7,13 +7,89 @@ const {
sanitizeMessageForTransmit,
} = require('@librechat/api');
const { isAssistantsEndpoint, ErrorTypes } = require('librechat-data-provider');
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
const { truncateText, smartTruncateText } = require('~/app/clients/prompts');
const clearPendingReq = require('~/cache/clearPendingReq');
const { sendError } = require('~/server/middleware/error');
const { spendTokens } = require('~/models/spendTokens');
const { saveMessage, getConvo } = require('~/models');
const { abortRun } = require('./abortRun');
/**
* Spend tokens for all models from collected usage.
* This handles both sequential and parallel agent execution.
*
* IMPORTANT: After spending, this function clears the collectedUsage array
* to prevent double-spending. The array is shared with AgentClient.collectedUsage,
* so clearing it here prevents the finally block from also spending tokens.
*
* @param {Object} params
* @param {string} params.userId - User ID
* @param {string} params.conversationId - Conversation ID
* @param {Array<Object>} params.collectedUsage - Usage metadata from all models
* @param {string} [params.fallbackModel] - Fallback model name if not in usage
*/
async function spendCollectedUsage({ userId, conversationId, collectedUsage, fallbackModel }) {
if (!collectedUsage || collectedUsage.length === 0) {
return;
}
const spendPromises = [];
for (const usage of collectedUsage) {
if (!usage) {
continue;
}
// Support both OpenAI format (input_token_details) and Anthropic format (cache_*_input_tokens)
const cache_creation =
Number(usage.input_token_details?.cache_creation) ||
Number(usage.cache_creation_input_tokens) ||
0;
const cache_read =
Number(usage.input_token_details?.cache_read) || Number(usage.cache_read_input_tokens) || 0;
const txMetadata = {
context: 'abort',
conversationId,
user: userId,
model: usage.model ?? fallbackModel,
};
if (cache_creation > 0 || cache_read > 0) {
spendPromises.push(
spendStructuredTokens(txMetadata, {
promptTokens: {
input: usage.input_tokens,
write: cache_creation,
read: cache_read,
},
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error('[abortMiddleware] Error spending structured tokens for abort', err);
}),
);
continue;
}
spendPromises.push(
spendTokens(txMetadata, {
promptTokens: usage.input_tokens,
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error('[abortMiddleware] Error spending tokens for abort', err);
}),
);
}
// Wait for all token spending to complete
await Promise.all(spendPromises);
// Clear the array to prevent double-spending from the AgentClient finally block.
// The collectedUsage array is shared by reference with AgentClient.collectedUsage,
// so clearing it here ensures recordCollectedUsage() sees an empty array and returns early.
collectedUsage.length = 0;
}
/**
* Abort an active message generation.
* Uses GenerationJobManager for all agent requests.
@ -39,9 +115,8 @@ async function abortMessage(req, res) {
return;
}
const { jobData, content, text } = abortResult;
const { jobData, content, text, collectedUsage } = abortResult;
// Count tokens and spend them
const completionTokens = await countTokens(text);
const promptTokens = jobData?.promptTokens ?? 0;
@ -62,10 +137,21 @@ async function abortMessage(req, res) {
tokenCount: completionTokens,
};
await spendTokens(
{ ...responseMessage, context: 'incomplete', user: userId },
{ promptTokens, completionTokens },
);
// Spend tokens for ALL models from collectedUsage (handles parallel agents/addedConvo)
if (collectedUsage && collectedUsage.length > 0) {
await spendCollectedUsage({
userId,
conversationId: jobData?.conversationId,
collectedUsage,
fallbackModel: jobData?.model,
});
} else {
// Fallback: no collected usage, use text-based token counting for primary model only
await spendTokens(
{ ...responseMessage, context: 'incomplete', user: userId },
{ promptTokens, completionTokens },
);
}
await saveMessage(
req,

View file

@ -0,0 +1,428 @@
/**
* Tests for abortMiddleware - spendCollectedUsage function
*
* This tests the token spending logic for abort scenarios,
* particularly for parallel agents (addedConvo) where multiple
* models need their tokens spent.
*/
const mockSpendTokens = jest.fn().mockResolvedValue();
const mockSpendStructuredTokens = jest.fn().mockResolvedValue();
jest.mock('~/models/spendTokens', () => ({
spendTokens: (...args) => mockSpendTokens(...args),
spendStructuredTokens: (...args) => mockSpendStructuredTokens(...args),
}));
jest.mock('@librechat/data-schemas', () => ({
logger: {
debug: jest.fn(),
error: jest.fn(),
warn: jest.fn(),
info: jest.fn(),
},
}));
jest.mock('@librechat/api', () => ({
countTokens: jest.fn().mockResolvedValue(100),
isEnabled: jest.fn().mockReturnValue(false),
sendEvent: jest.fn(),
GenerationJobManager: {
abortJob: jest.fn(),
},
sanitizeMessageForTransmit: jest.fn((msg) => msg),
}));
jest.mock('librechat-data-provider', () => ({
isAssistantsEndpoint: jest.fn().mockReturnValue(false),
ErrorTypes: { INVALID_REQUEST: 'INVALID_REQUEST', NO_SYSTEM_MESSAGES: 'NO_SYSTEM_MESSAGES' },
}));
jest.mock('~/app/clients/prompts', () => ({
truncateText: jest.fn((text) => text),
smartTruncateText: jest.fn((text) => text),
}));
jest.mock('~/cache/clearPendingReq', () => jest.fn().mockResolvedValue());
jest.mock('~/server/middleware/error', () => ({
sendError: jest.fn(),
}));
jest.mock('~/models', () => ({
saveMessage: jest.fn().mockResolvedValue(),
getConvo: jest.fn().mockResolvedValue({ title: 'Test Chat' }),
}));
jest.mock('./abortRun', () => ({
abortRun: jest.fn(),
}));
// Import the module after mocks are set up
// We need to extract the spendCollectedUsage function for testing
// Since it's not exported, we'll test it through the handleAbort flow
describe('abortMiddleware - spendCollectedUsage', () => {
beforeEach(() => {
jest.clearAllMocks();
});
describe('spendCollectedUsage logic', () => {
// Since spendCollectedUsage is not exported, we test the logic directly
// by replicating the function here for unit testing
const spendCollectedUsage = async ({
userId,
conversationId,
collectedUsage,
fallbackModel,
}) => {
if (!collectedUsage || collectedUsage.length === 0) {
return;
}
const spendPromises = [];
for (const usage of collectedUsage) {
if (!usage) {
continue;
}
const cache_creation =
Number(usage.input_token_details?.cache_creation) ||
Number(usage.cache_creation_input_tokens) ||
0;
const cache_read =
Number(usage.input_token_details?.cache_read) ||
Number(usage.cache_read_input_tokens) ||
0;
const txMetadata = {
context: 'abort',
conversationId,
user: userId,
model: usage.model ?? fallbackModel,
};
if (cache_creation > 0 || cache_read > 0) {
spendPromises.push(
mockSpendStructuredTokens(txMetadata, {
promptTokens: {
input: usage.input_tokens,
write: cache_creation,
read: cache_read,
},
completionTokens: usage.output_tokens,
}).catch(() => {
// Log error but don't throw
}),
);
continue;
}
spendPromises.push(
mockSpendTokens(txMetadata, {
promptTokens: usage.input_tokens,
completionTokens: usage.output_tokens,
}).catch(() => {
// Log error but don't throw
}),
);
}
// Wait for all token spending to complete
await Promise.all(spendPromises);
// Clear the array to prevent double-spending
collectedUsage.length = 0;
};
it('should return early if collectedUsage is empty', async () => {
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage: [],
fallbackModel: 'gpt-4',
});
expect(mockSpendTokens).not.toHaveBeenCalled();
expect(mockSpendStructuredTokens).not.toHaveBeenCalled();
});
it('should return early if collectedUsage is null', async () => {
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage: null,
fallbackModel: 'gpt-4',
});
expect(mockSpendTokens).not.toHaveBeenCalled();
expect(mockSpendStructuredTokens).not.toHaveBeenCalled();
});
it('should skip null entries in collectedUsage', async () => {
const collectedUsage = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
null,
{ input_tokens: 200, output_tokens: 60, model: 'gpt-4' },
];
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'gpt-4',
});
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
});
it('should spend tokens for single model', async () => {
const collectedUsage = [{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' }];
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'gpt-4',
});
expect(mockSpendTokens).toHaveBeenCalledTimes(1);
expect(mockSpendTokens).toHaveBeenCalledWith(
expect.objectContaining({
context: 'abort',
conversationId: 'convo-123',
user: 'user-123',
model: 'gpt-4',
}),
{ promptTokens: 100, completionTokens: 50 },
);
});
it('should spend tokens for multiple models (parallel agents)', async () => {
const collectedUsage = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
{ input_tokens: 120, output_tokens: 60, model: 'gemini-pro' },
];
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'gpt-4',
});
expect(mockSpendTokens).toHaveBeenCalledTimes(3);
// Verify each model was called
expect(mockSpendTokens).toHaveBeenNthCalledWith(
1,
expect.objectContaining({ model: 'gpt-4' }),
{ promptTokens: 100, completionTokens: 50 },
);
expect(mockSpendTokens).toHaveBeenNthCalledWith(
2,
expect.objectContaining({ model: 'claude-3' }),
{ promptTokens: 80, completionTokens: 40 },
);
expect(mockSpendTokens).toHaveBeenNthCalledWith(
3,
expect.objectContaining({ model: 'gemini-pro' }),
{ promptTokens: 120, completionTokens: 60 },
);
});
it('should use fallbackModel when usage.model is missing', async () => {
const collectedUsage = [{ input_tokens: 100, output_tokens: 50 }];
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'fallback-model',
});
expect(mockSpendTokens).toHaveBeenCalledWith(
expect.objectContaining({ model: 'fallback-model' }),
expect.any(Object),
);
});
it('should use spendStructuredTokens for OpenAI format cache tokens', async () => {
const collectedUsage = [
{
input_tokens: 100,
output_tokens: 50,
model: 'gpt-4',
input_token_details: {
cache_creation: 20,
cache_read: 10,
},
},
];
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'gpt-4',
});
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
expect(mockSpendTokens).not.toHaveBeenCalled();
expect(mockSpendStructuredTokens).toHaveBeenCalledWith(
expect.objectContaining({ model: 'gpt-4', context: 'abort' }),
{
promptTokens: {
input: 100,
write: 20,
read: 10,
},
completionTokens: 50,
},
);
});
it('should use spendStructuredTokens for Anthropic format cache tokens', async () => {
const collectedUsage = [
{
input_tokens: 100,
output_tokens: 50,
model: 'claude-3',
cache_creation_input_tokens: 25,
cache_read_input_tokens: 15,
},
];
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'claude-3',
});
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
expect(mockSpendTokens).not.toHaveBeenCalled();
expect(mockSpendStructuredTokens).toHaveBeenCalledWith(
expect.objectContaining({ model: 'claude-3' }),
{
promptTokens: {
input: 100,
write: 25,
read: 15,
},
completionTokens: 50,
},
);
});
it('should handle mixed cache and non-cache entries', async () => {
const collectedUsage = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{
input_tokens: 150,
output_tokens: 30,
model: 'claude-3',
cache_creation_input_tokens: 20,
cache_read_input_tokens: 10,
},
{ input_tokens: 200, output_tokens: 20, model: 'gemini-pro' },
];
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'gpt-4',
});
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
});
it('should handle real-world parallel agent abort scenario', async () => {
// Simulates: Primary agent (gemini) + addedConvo agent (gpt-5) aborted mid-stream
const collectedUsage = [
{ input_tokens: 31596, output_tokens: 151, model: 'gemini-3-flash-preview' },
{ input_tokens: 28000, output_tokens: 120, model: 'gpt-5.2' },
];
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'gemini-3-flash-preview',
});
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
// Primary model
expect(mockSpendTokens).toHaveBeenNthCalledWith(
1,
expect.objectContaining({ model: 'gemini-3-flash-preview' }),
{ promptTokens: 31596, completionTokens: 151 },
);
// Parallel model (addedConvo)
expect(mockSpendTokens).toHaveBeenNthCalledWith(
2,
expect.objectContaining({ model: 'gpt-5.2' }),
{ promptTokens: 28000, completionTokens: 120 },
);
});
it('should clear collectedUsage array after spending to prevent double-spending', async () => {
// This tests the race condition fix: after abort middleware spends tokens,
// the collectedUsage array is cleared so AgentClient.recordCollectedUsage()
// (which shares the same array reference) sees an empty array and returns early.
const collectedUsage = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
];
expect(collectedUsage.length).toBe(2);
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'gpt-4',
});
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
// The array should be cleared after spending
expect(collectedUsage.length).toBe(0);
});
it('should await all token spending operations before clearing array', async () => {
// Ensure we don't clear the array before spending completes
let spendCallCount = 0;
mockSpendTokens.mockImplementation(async () => {
spendCallCount++;
// Simulate async delay
await new Promise((resolve) => setTimeout(resolve, 10));
});
const collectedUsage = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
];
await spendCollectedUsage({
userId: 'user-123',
conversationId: 'convo-123',
collectedUsage,
fallbackModel: 'gpt-4',
});
// Both spend calls should have completed
expect(spendCallCount).toBe(2);
// Array should be cleared after awaiting
expect(collectedUsage.length).toBe(0);
});
});
});

View file

@ -3,10 +3,11 @@ const { createContentAggregator } = require('@librechat/agents');
const {
initializeAgent,
validateAgentModel,
getCustomEndpointConfig,
createSequentialChainEdges,
createEdgeCollector,
filterOrphanedEdges,
GenerationJobManager,
getCustomEndpointConfig,
createSequentialChainEdges,
} = require('@librechat/api');
const {
EModelEndpoint,
@ -314,6 +315,10 @@ const initializeClient = async ({ req, res, signal, endpointOption }) => {
endpoint: isEphemeralAgentId(primaryConfig.id) ? primaryConfig.endpoint : EModelEndpoint.agents,
});
if (streamId) {
GenerationJobManager.setCollectedUsage(streamId, collectedUsage);
}
return { client, userMCPAuthMap };
};

View file

@ -1,9 +1,11 @@
import { logger } from '@librechat/data-schemas';
import type { StandardGraph } from '@librechat/agents';
import type { Agents } from 'librechat-data-provider';
import { parseTextParts } from 'librechat-data-provider';
import type { Agents, TMessageContentParts } from 'librechat-data-provider';
import type {
SerializableJobData,
IEventTransport,
UsageMetadata,
AbortResult,
IJobStore,
} from './interfaces/IJobStore';
@ -585,7 +587,14 @@ class GenerationJobManagerClass {
if (!jobData) {
logger.warn(`[GenerationJobManager] Cannot abort - job not found: ${streamId}`);
return { success: false, jobData: null, content: [], finalEvent: null };
return {
text: '',
content: [],
jobData: null,
success: false,
finalEvent: null,
collectedUsage: [],
};
}
// Emit abort signal for cross-replica support (Redis mode)
@ -599,15 +608,21 @@ class GenerationJobManagerClass {
runtime.abortController.abort();
}
// Get content before clearing state
/** Content before clearing state */
const result = await this.jobStore.getContentParts(streamId);
const content = result?.content ?? [];
// Detect "early abort" - aborted before any generation happened (e.g., during tool loading)
// In this case, no messages were saved to DB, so frontend shouldn't navigate to conversation
/** Collected usage for all models */
const collectedUsage = this.jobStore.getCollectedUsage(streamId);
/** Text from content parts for fallback token counting */
const text = parseTextParts(content as TMessageContentParts[]);
/** Detect "early abort" - aborted before any generation happened (e.g., during tool loading)
In this case, no messages were saved to DB, so frontend shouldn't navigate to conversation */
const isEarlyAbort = content.length === 0 && !jobData.responseMessageId;
// Create final event for abort
/** Final event for abort */
const userMessageId = jobData.userMessage?.messageId;
const abortFinalEvent: t.ServerSentEvent = {
@ -669,6 +684,8 @@ class GenerationJobManagerClass {
jobData,
content,
finalEvent: abortFinalEvent,
text,
collectedUsage,
};
}
@ -933,6 +950,18 @@ class GenerationJobManagerClass {
this.jobStore.setContentParts(streamId, contentParts);
}
/**
* Set reference to the collectedUsage array.
* This array accumulates token usage from all models during generation.
*/
setCollectedUsage(streamId: string, collectedUsage: UsageMetadata[]): void {
// Use runtime state check for performance (sync check)
if (!this.runtimeState.has(streamId)) {
return;
}
this.jobStore.setCollectedUsage(streamId, collectedUsage);
}
/**
* Set reference to the graph instance.
*/

View file

@ -0,0 +1,482 @@
/**
* Tests for collected usage functionality in GenerationJobManager.
*
* This tests the storage and retrieval of collectedUsage for abort handling,
* ensuring all models (including parallel agents from addedConvo) have their
* tokens spent when a conversation is aborted.
*/
import type { UsageMetadata } from '../interfaces/IJobStore';
describe('CollectedUsage - InMemoryJobStore', () => {
beforeEach(() => {
jest.resetModules();
});
it('should store and retrieve collectedUsage', async () => {
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const store = new InMemoryJobStore();
await store.initialize();
const streamId = 'test-stream-1';
await store.createJob(streamId, 'user-1');
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
];
store.setCollectedUsage(streamId, collectedUsage);
const retrieved = store.getCollectedUsage(streamId);
expect(retrieved).toEqual(collectedUsage);
expect(retrieved).toHaveLength(2);
await store.destroy();
});
it('should return empty array when no collectedUsage set', async () => {
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const store = new InMemoryJobStore();
await store.initialize();
const streamId = 'test-stream-2';
await store.createJob(streamId, 'user-1');
const retrieved = store.getCollectedUsage(streamId);
expect(retrieved).toEqual([]);
await store.destroy();
});
it('should return empty array for non-existent stream', async () => {
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const store = new InMemoryJobStore();
await store.initialize();
const retrieved = store.getCollectedUsage('non-existent-stream');
expect(retrieved).toEqual([]);
await store.destroy();
});
it('should update collectedUsage when set multiple times', async () => {
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const store = new InMemoryJobStore();
await store.initialize();
const streamId = 'test-stream-3';
await store.createJob(streamId, 'user-1');
const usage1: UsageMetadata[] = [{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' }];
store.setCollectedUsage(streamId, usage1);
// Simulate more usage being added
const usage2: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
];
store.setCollectedUsage(streamId, usage2);
const retrieved = store.getCollectedUsage(streamId);
expect(retrieved).toHaveLength(2);
await store.destroy();
});
it('should clear collectedUsage when clearContentState is called', async () => {
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const store = new InMemoryJobStore();
await store.initialize();
const streamId = 'test-stream-4';
await store.createJob(streamId, 'user-1');
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
];
store.setCollectedUsage(streamId, collectedUsage);
expect(store.getCollectedUsage(streamId)).toHaveLength(1);
store.clearContentState(streamId);
expect(store.getCollectedUsage(streamId)).toEqual([]);
await store.destroy();
});
it('should clear collectedUsage when job is deleted', async () => {
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const store = new InMemoryJobStore();
await store.initialize();
const streamId = 'test-stream-5';
await store.createJob(streamId, 'user-1');
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
];
store.setCollectedUsage(streamId, collectedUsage);
await store.deleteJob(streamId);
expect(store.getCollectedUsage(streamId)).toEqual([]);
await store.destroy();
});
});
describe('CollectedUsage - GenerationJobManager', () => {
beforeEach(() => {
jest.resetModules();
});
it('should set and retrieve collectedUsage through manager', async () => {
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
cleanupOnComplete: false,
});
await GenerationJobManager.initialize();
const streamId = `manager-test-${Date.now()}`;
await GenerationJobManager.createJob(streamId, 'user-1');
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
];
GenerationJobManager.setCollectedUsage(streamId, collectedUsage);
// Retrieve through abort
const abortResult = await GenerationJobManager.abortJob(streamId);
expect(abortResult.collectedUsage).toEqual(collectedUsage);
expect(abortResult.collectedUsage).toHaveLength(2);
await GenerationJobManager.destroy();
});
it('should return empty collectedUsage when none set', async () => {
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
cleanupOnComplete: false,
});
await GenerationJobManager.initialize();
const streamId = `no-usage-test-${Date.now()}`;
await GenerationJobManager.createJob(streamId, 'user-1');
const abortResult = await GenerationJobManager.abortJob(streamId);
expect(abortResult.collectedUsage).toEqual([]);
await GenerationJobManager.destroy();
});
it('should not set collectedUsage if job does not exist', async () => {
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
});
await GenerationJobManager.initialize();
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
];
// This should not throw, just silently do nothing
GenerationJobManager.setCollectedUsage('non-existent-stream', collectedUsage);
const abortResult = await GenerationJobManager.abortJob('non-existent-stream');
expect(abortResult.success).toBe(false);
await GenerationJobManager.destroy();
});
});
describe('AbortJob - Text and CollectedUsage', () => {
beforeEach(() => {
jest.resetModules();
});
it('should extract text from content parts on abort', async () => {
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
cleanupOnComplete: false,
});
await GenerationJobManager.initialize();
const streamId = `text-extract-${Date.now()}`;
await GenerationJobManager.createJob(streamId, 'user-1');
// Set content parts with text
const contentParts = [
{ type: 'text', text: 'Hello ' },
{ type: 'text', text: 'world!' },
];
GenerationJobManager.setContentParts(streamId, contentParts as never);
const abortResult = await GenerationJobManager.abortJob(streamId);
expect(abortResult.text).toBe('Hello world!');
expect(abortResult.success).toBe(true);
await GenerationJobManager.destroy();
});
it('should return empty text when no content parts', async () => {
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
cleanupOnComplete: false,
});
await GenerationJobManager.initialize();
const streamId = `empty-text-${Date.now()}`;
await GenerationJobManager.createJob(streamId, 'user-1');
const abortResult = await GenerationJobManager.abortJob(streamId);
expect(abortResult.text).toBe('');
await GenerationJobManager.destroy();
});
it('should return both text and collectedUsage on abort', async () => {
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
cleanupOnComplete: false,
});
await GenerationJobManager.initialize();
const streamId = `full-abort-${Date.now()}`;
await GenerationJobManager.createJob(streamId, 'user-1');
// Set content parts
const contentParts = [{ type: 'text', text: 'Partial response...' }];
GenerationJobManager.setContentParts(streamId, contentParts as never);
// Set collected usage
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
];
GenerationJobManager.setCollectedUsage(streamId, collectedUsage);
const abortResult = await GenerationJobManager.abortJob(streamId);
expect(abortResult.success).toBe(true);
expect(abortResult.text).toBe('Partial response...');
expect(abortResult.collectedUsage).toEqual(collectedUsage);
expect(abortResult.content).toHaveLength(1);
await GenerationJobManager.destroy();
});
it('should return empty values for non-existent job', async () => {
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
});
await GenerationJobManager.initialize();
const abortResult = await GenerationJobManager.abortJob('non-existent-job');
expect(abortResult.success).toBe(false);
expect(abortResult.text).toBe('');
expect(abortResult.collectedUsage).toEqual([]);
expect(abortResult.content).toEqual([]);
expect(abortResult.jobData).toBeNull();
await GenerationJobManager.destroy();
});
});
describe('Real-world Scenarios', () => {
beforeEach(() => {
jest.resetModules();
});
it('should handle parallel agent abort with collected usage', async () => {
/**
* Scenario: User aborts a conversation with addedConvo (parallel agents)
* - Primary agent: gemini-3-flash-preview
* - Parallel agent: gpt-5.2
* Both should have their tokens spent on abort
*/
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
cleanupOnComplete: false,
});
await GenerationJobManager.initialize();
const streamId = `parallel-abort-${Date.now()}`;
await GenerationJobManager.createJob(streamId, 'user-1');
// Simulate content from primary agent
const contentParts = [
{ type: 'text', text: 'Primary agent output...' },
{ type: 'text', text: 'More content...' },
];
GenerationJobManager.setContentParts(streamId, contentParts as never);
// Simulate collected usage from both agents (as would happen during generation)
const collectedUsage: UsageMetadata[] = [
{
input_tokens: 31596,
output_tokens: 151,
model: 'gemini-3-flash-preview',
},
{
input_tokens: 28000,
output_tokens: 120,
model: 'gpt-5.2',
},
];
GenerationJobManager.setCollectedUsage(streamId, collectedUsage);
// Abort the job
const abortResult = await GenerationJobManager.abortJob(streamId);
// Verify both models' usage is returned
expect(abortResult.success).toBe(true);
expect(abortResult.collectedUsage).toHaveLength(2);
expect(abortResult.collectedUsage[0].model).toBe('gemini-3-flash-preview');
expect(abortResult.collectedUsage[1].model).toBe('gpt-5.2');
// Verify text is extracted
expect(abortResult.text).toContain('Primary agent output');
await GenerationJobManager.destroy();
});
it('should handle abort with cache tokens from Anthropic', async () => {
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
cleanupOnComplete: false,
});
await GenerationJobManager.initialize();
const streamId = `cache-abort-${Date.now()}`;
await GenerationJobManager.createJob(streamId, 'user-1');
// Anthropic-style cache tokens
const collectedUsage: UsageMetadata[] = [
{
input_tokens: 788,
output_tokens: 163,
cache_creation_input_tokens: 30808,
cache_read_input_tokens: 0,
model: 'claude-opus-4-5-20251101',
},
];
GenerationJobManager.setCollectedUsage(streamId, collectedUsage);
const abortResult = await GenerationJobManager.abortJob(streamId);
expect(abortResult.collectedUsage[0].cache_creation_input_tokens).toBe(30808);
await GenerationJobManager.destroy();
});
it('should handle abort with sequential tool calls usage', async () => {
/**
* Scenario: Single agent with multiple tool calls, aborted mid-execution
* Usage accumulates for each LLM call
*/
const { GenerationJobManager } = await import('../GenerationJobManager');
const { InMemoryJobStore } = await import('../implementations/InMemoryJobStore');
const { InMemoryEventTransport } = await import('../implementations/InMemoryEventTransport');
GenerationJobManager.configure({
jobStore: new InMemoryJobStore(),
eventTransport: new InMemoryEventTransport(),
isRedis: false,
cleanupOnComplete: false,
});
await GenerationJobManager.initialize();
const streamId = `sequential-abort-${Date.now()}`;
await GenerationJobManager.createJob(streamId, 'user-1');
// Usage from multiple sequential LLM calls (tool use pattern)
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' }, // Initial call
{ input_tokens: 150, output_tokens: 30, model: 'gpt-4' }, // After tool result 1
{ input_tokens: 180, output_tokens: 20, model: 'gpt-4' }, // After tool result 2 (aborted here)
];
GenerationJobManager.setCollectedUsage(streamId, collectedUsage);
const abortResult = await GenerationJobManager.abortJob(streamId);
expect(abortResult.collectedUsage).toHaveLength(3);
// All three entries should be present for proper token accounting
await GenerationJobManager.destroy();
});
});

View file

@ -1,7 +1,12 @@
import { logger } from '@librechat/data-schemas';
import type { StandardGraph } from '@librechat/agents';
import type { Agents } from 'librechat-data-provider';
import type { IJobStore, SerializableJobData, JobStatus } from '~/stream/interfaces/IJobStore';
import type {
SerializableJobData,
UsageMetadata,
IJobStore,
JobStatus,
} from '~/stream/interfaces/IJobStore';
/**
* Content state for a job - volatile, in-memory only.
@ -10,6 +15,7 @@ import type { IJobStore, SerializableJobData, JobStatus } from '~/stream/interfa
interface ContentState {
contentParts: Agents.MessageContentComplex[];
graphRef: WeakRef<StandardGraph> | null;
collectedUsage: UsageMetadata[];
}
/**
@ -240,6 +246,7 @@ export class InMemoryJobStore implements IJobStore {
this.contentState.set(streamId, {
contentParts: [],
graphRef: new WeakRef(graph),
collectedUsage: [],
});
}
}
@ -252,10 +259,30 @@ export class InMemoryJobStore implements IJobStore {
if (existing) {
existing.contentParts = contentParts;
} else {
this.contentState.set(streamId, { contentParts, graphRef: null });
this.contentState.set(streamId, { contentParts, graphRef: null, collectedUsage: [] });
}
}
/**
* Set collected usage reference for a job.
*/
setCollectedUsage(streamId: string, collectedUsage: UsageMetadata[]): void {
const existing = this.contentState.get(streamId);
if (existing) {
existing.collectedUsage = collectedUsage;
} else {
this.contentState.set(streamId, { contentParts: [], graphRef: null, collectedUsage });
}
}
/**
* Get collected usage for a job.
*/
getCollectedUsage(streamId: string): UsageMetadata[] {
const state = this.contentState.get(streamId);
return state?.collectedUsage ?? [];
}
/**
* Get content parts for a job.
* Returns live content from stored reference.

View file

@ -1,9 +1,14 @@
import { logger } from '@librechat/data-schemas';
import { createContentAggregator } from '@librechat/agents';
import type { IJobStore, SerializableJobData, JobStatus } from '~/stream/interfaces/IJobStore';
import type { StandardGraph } from '@librechat/agents';
import type { Agents } from 'librechat-data-provider';
import type { Redis, Cluster } from 'ioredis';
import type {
SerializableJobData,
UsageMetadata,
IJobStore,
JobStatus,
} from '~/stream/interfaces/IJobStore';
/**
* Key prefixes for Redis storage.
@ -90,6 +95,13 @@ export class RedisJobStore implements IJobStore {
*/
private localGraphCache = new Map<string, WeakRef<StandardGraph>>();
/**
* Local cache for collectedUsage arrays.
* Generation happens on a single instance, so collectedUsage is only available locally.
* For cross-replica abort, the abort handler falls back to text-based token counting.
*/
private localCollectedUsageCache = new Map<string, UsageMetadata[]>();
/** Cleanup interval in ms (1 minute) */
private cleanupIntervalMs = 60000;
@ -227,6 +239,7 @@ export class RedisJobStore implements IJobStore {
async deleteJob(streamId: string): Promise<void> {
// Clear local caches
this.localGraphCache.delete(streamId);
this.localCollectedUsageCache.delete(streamId);
// Note: userJobs cleanup is handled lazily via self-healing in getActiveJobIdsByUser
// In cluster mode, separate runningJobs (global) from stream-specific keys (same slot)
@ -290,6 +303,7 @@ export class RedisJobStore implements IJobStore {
if (!job) {
await this.redis.srem(KEYS.runningJobs, streamId);
this.localGraphCache.delete(streamId);
this.localCollectedUsageCache.delete(streamId);
cleaned++;
continue;
}
@ -298,6 +312,7 @@ export class RedisJobStore implements IJobStore {
if (job.status !== 'running') {
await this.redis.srem(KEYS.runningJobs, streamId);
this.localGraphCache.delete(streamId);
this.localCollectedUsageCache.delete(streamId);
cleaned++;
continue;
}
@ -382,6 +397,7 @@ export class RedisJobStore implements IJobStore {
}
// Clear local caches
this.localGraphCache.clear();
this.localCollectedUsageCache.clear();
// Don't close the Redis connection - it's shared
logger.info('[RedisJobStore] Destroyed');
}
@ -406,11 +422,28 @@ export class RedisJobStore implements IJobStore {
* No-op for Redis - content parts are reconstructed from chunks.
* Metadata (agentId, groupId) is embedded directly on content parts by the agent runtime.
*/
setContentParts(_streamId: string, _contentParts: Agents.MessageContentComplex[]): void {
setContentParts(): void {
// Content parts are reconstructed from chunks during getContentParts
// No separate storage needed
}
/**
* Store collectedUsage reference in local cache.
* This is used for abort handling to spend tokens for all models.
* Note: Only available on the generating instance; cross-replica abort uses fallback.
*/
setCollectedUsage(streamId: string, collectedUsage: UsageMetadata[]): void {
this.localCollectedUsageCache.set(streamId, collectedUsage);
}
/**
* Get collected usage for a job.
* Only available if this is the generating instance.
*/
getCollectedUsage(streamId: string): UsageMetadata[] {
return this.localCollectedUsageCache.get(streamId) ?? [];
}
/**
* Get aggregated content - tries local cache first, falls back to Redis reconstruction.
*
@ -528,6 +561,7 @@ export class RedisJobStore implements IJobStore {
clearContentState(streamId: string): void {
// Clear local caches immediately
this.localGraphCache.delete(streamId);
this.localCollectedUsageCache.delete(streamId);
// Fire and forget - async cleanup for Redis
this.clearContentStateAsync(streamId).catch((err) => {

View file

@ -5,11 +5,12 @@ export {
} from './GenerationJobManager';
export type {
AbortResult,
SerializableJobData,
IEventTransport,
UsageMetadata,
AbortResult,
JobStatus,
IJobStore,
IEventTransport,
} from './interfaces/IJobStore';
export { createStreamServices } from './createStreamServices';

View file

@ -45,6 +45,54 @@ export interface SerializableJobData {
promptTokens?: number;
}
/**
* Usage metadata for token spending across different LLM providers.
*
* This interface supports two mutually exclusive cache token formats:
*
* **OpenAI format** (GPT-4, o1, etc.):
* - Uses `input_token_details.cache_creation` and `input_token_details.cache_read`
* - Cache tokens are nested under the `input_token_details` object
*
* **Anthropic format** (Claude models):
* - Uses `cache_creation_input_tokens` and `cache_read_input_tokens`
* - Cache tokens are top-level properties
*
* When processing usage data, check both formats:
* ```typescript
* const cacheCreation = usage.input_token_details?.cache_creation
* || usage.cache_creation_input_tokens || 0;
* ```
*/
export interface UsageMetadata {
/** Total input tokens (prompt tokens) */
input_tokens?: number;
/** Total output tokens (completion tokens) */
output_tokens?: number;
/** Model identifier that generated this usage */
model?: string;
/**
* OpenAI-style cache token details.
* Present for OpenAI models (GPT-4, o1, etc.)
*/
input_token_details?: {
/** Tokens written to cache */
cache_creation?: number;
/** Tokens read from cache */
cache_read?: number;
};
/**
* Anthropic-style cache creation tokens.
* Present for Claude models. Mutually exclusive with input_token_details.
*/
cache_creation_input_tokens?: number;
/**
* Anthropic-style cache read tokens.
* Present for Claude models. Mutually exclusive with input_token_details.
*/
cache_read_input_tokens?: number;
}
/**
* Result returned from aborting a job - contains all data needed
* for token spending and message saving without storing callbacks
@ -58,6 +106,10 @@ export interface AbortResult {
content: Agents.MessageContentComplex[];
/** Final event to send to client */
finalEvent: unknown;
/** Concatenated text from all content parts for token counting fallback */
text: string;
/** Collected usage metadata from all models for token spending */
collectedUsage: UsageMetadata[];
}
/**
@ -210,6 +262,23 @@ export interface IJobStore {
* @param runSteps - Run steps to save
*/
saveRunSteps?(streamId: string, runSteps: Agents.RunStep[]): Promise<void>;
/**
* Set collected usage reference for a job.
* This array accumulates token usage from all models during generation.
*
* @param streamId - The stream identifier
* @param collectedUsage - Array of usage metadata from all models
*/
setCollectedUsage(streamId: string, collectedUsage: UsageMetadata[]): void;
/**
* Get collected usage for a job.
*
* @param streamId - The stream identifier
* @returns Array of usage metadata or empty array
*/
getCollectedUsage(streamId: string): UsageMetadata[];
}
/**