feat: Accurate Token Usage Tracking & Optional Balance (#1018)

* refactor(Chains/llms): allow passing callbacks

* refactor(BaseClient): accurately count completion tokens as generation only

* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM

* wip: summary prompt tokens

* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing

* refactor(createLLM): make streaming prop false by default

* chore: remove use of getTokenCountForResponse

* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace

* chore: remove passing of streaming prop, also console log useful vars for tracing

* feat: formatFromLangChain helper function to count tokens for ChatModelStart

* refactor(initializeLLM): add role for LLM tracing

* chore(formatFromLangChain): update JSDoc

* feat(formatMessages): formats langChain messages into OpenAI payload format

* chore: install openai-chat-tokens

* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring

* feat: accurate prompt tokens for ChatModelStart before generation

* refactor(handleChatModelStart): move to callbacks dir, use factory function

* refactor(initializeLLM): rename 'role' to 'context'

* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file

* refactor(initializeClient): add req,res objects to client options

* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update

* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match

* refactor(Tx): add fair fallback value multiplier incase the config result is undefined

* refactor(Balance): rename 'tokens' to 'tokenCredits'

* feat: balance check, add tx.js for new tx-related methods and tests

* chore(summaryPrompts): update prompt token count

* refactor(callbacks): pass req, res
wip: check balance

* refactor(Tx): make convoId a String type, fix(calculateTokenValue)

* refactor(BaseClient): add conversationId as client prop when assigned

* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls

* feat(spendTokens): helper to spend prompt/completion tokens

* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance

* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance

* chore: remove prompt and completion token logging from route handler

* chore(spendTokens): add JSDoc

* feat(logTokenCost): record transactions for basic api calls

* chore(ask/edit): invoke getResponseSender only once per API call

* refactor(ask/edit): pass promptTokens to getIds and include in abort data

* refactor(getIds -> getReqData): rename function

* refactor(Tx): increase value if incomplete message

* feat: record tokenUsage when message is aborted

* refactor: subtract tokens when payload includes function_call

* refactor: add namespace for token_balance

* fix(spendTokens): only execute if corresponding token type amounts are defined

* refactor(checkBalance): throws Error if not enough token credits

* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'

* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens

* fix: properly cancel title requests when there isn't enough tokens to generate

* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain

* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError

* refactor(createStartHandler): if summary, add error details to runs

* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer

* refactor(logTokenCost -> recordTokenUsage): rename

* refactor(checkBalance): include promptTokens in errorMessage

* refactor(checkBalance/spendTokens): move to models dir

* fix(createLanguageChain): correctly pass config

* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check

* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called

* refactor(createStartHandler): add error to run if context is plugins as well

* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run

* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic

* chore: use absolute equality for addTitle condition

* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional

* style: icon changes to match official

* fix(BaseClient): getTokenCountForResponse -> getTokenCount

* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc

* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled

* fix(e2e/cleanUp): cleanup new collections, import all model methods from index

* fix(config/add-balance): add uncaughtException listener

* fix: circular dependency

* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance

* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped

* fix(createStartHandler): correct condition for generations

* chore: bump postcss due to moderate severity vulnerability

* chore: bump zod due to low severity vulnerability

* chore: bump openai & data-provider version

* feat(types): OpenAI Message types

* chore: update bun lockfile

* refactor(CodeBlock): add error block formatting

* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON

* chore(logViolation): delete user_id after error is logged

* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex

* fix(DALL-E): use latest openai SDK

* chore: reorganize imports, fix type issue

* feat(server): add balance route

* fix(api/models): add auth

* feat(data-provider): /api/balance query

* feat: show balance if checking is enabled, refetch on final message or error

* chore: update docs, .env.example with token_usage info, add balance script command

* fix(Balance): fallback to empty obj for balance query

* style: slight adjustment of balance element

* docs(token_usage): add PR notes
This commit is contained in:
Danny Avila 2023-10-05 18:34:10 -04:00 committed by GitHub
parent be71a1947b
commit 365c39c405
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
81 changed files with 1606 additions and 293 deletions

View file

@ -195,7 +195,7 @@ describe('BaseClient', () => {
summaryIndex: 3,
});
TestClient.getTokenCountForResponse = jest.fn().mockReturnValue(40);
TestClient.getTokenCount = jest.fn().mockReturnValue(40);
const instructions = { content: 'Please provide more details.' };
const orderedMessages = [
@ -455,7 +455,7 @@ describe('BaseClient', () => {
const opts = {
conversationId,
parentMessageId,
getIds: jest.fn(),
getReqData: jest.fn(),
onStart: jest.fn(),
};
@ -472,7 +472,7 @@ describe('BaseClient', () => {
parentMessageId = response.messageId;
expect(response.conversationId).toEqual(conversationId);
expect(response).toEqual(expectedResult);
expect(opts.getIds).toHaveBeenCalled();
expect(opts.getReqData).toHaveBeenCalled();
expect(opts.onStart).toHaveBeenCalled();
expect(TestClient.getBuildMessagesOptions).toHaveBeenCalled();
expect(TestClient.getSaveOptions).toHaveBeenCalled();
@ -546,11 +546,11 @@ describe('BaseClient', () => {
);
});
test('getIds is called with the correct arguments', async () => {
const getIds = jest.fn();
const opts = { getIds };
test('getReqData is called with the correct arguments', async () => {
const getReqData = jest.fn();
const opts = { getReqData };
const response = await TestClient.sendMessage('Hello, world!', opts);
expect(getIds).toHaveBeenCalledWith({
expect(getReqData).toHaveBeenCalledWith({
userMessage: expect.objectContaining({ text: 'Hello, world!' }),
conversationId: response.conversationId,
responseMessageId: response.messageId,
@ -591,12 +591,12 @@ describe('BaseClient', () => {
expect(TestClient.sendCompletion).toHaveBeenCalledWith(payload, opts);
});
test('getTokenCountForResponse is called with the correct arguments', async () => {
test('getTokenCount for response is called with the correct arguments', async () => {
const tokenCountMap = {}; // Mock tokenCountMap
TestClient.buildMessages.mockReturnValue({ prompt: [], tokenCountMap });
TestClient.getTokenCountForResponse = jest.fn();
TestClient.getTokenCount = jest.fn();
const response = await TestClient.sendMessage('Hello, world!', {});
expect(TestClient.getTokenCountForResponse).toHaveBeenCalledWith(response);
expect(TestClient.getTokenCount).toHaveBeenCalledWith(response.text);
});
test('returns an object with the correct shape', async () => {