mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-17 17:00:15 +01:00
feat: ConversationSummaryBufferMemory (#973)
* refactor: pass model in message edit payload, use encoder in standalone util function * feat: add summaryBuffer helper * refactor(api/messages): use new countTokens helper and add auth middleware at top * wip: ConversationSummaryBufferMemory * refactor: move pre-generation helpers to prompts dir * chore: remove console log * chore: remove test as payload will no longer carry tokenCount * chore: update getMessagesWithinTokenLimit JSDoc * refactor: optimize getMessagesForConversation and also break on summary, feat(ci): getMessagesForConversation tests * refactor(getMessagesForConvo): count '00000000-0000-0000-0000-000000000000' as root message * chore: add newer model to token map * fix: condition was point to prop of array instead of message prop * refactor(BaseClient): use object for refineMessages param, rename 'summary' to 'summaryMessage', add previous_summary refactor(getMessagesWithinTokenLimit): replace text and tokenCount if should summarize, summary, and summaryTokenCount are present fix/refactor(handleContextStrategy): use the right comparison length for context diff, and replace payload first message when a summary is present * chore: log previous_summary if debugging * refactor(formatMessage): assume if role is defined that it's a valid value * refactor(getMessagesWithinTokenLimit): remove summary logic refactor(handleContextStrategy): add usePrevSummary logic in case only summary was pruned refactor(loadHistory): initial message query will return all ordered messages but keep track of the latest summary refactor(getMessagesForConversation): use object for single param, edit jsdoc, edit all files using the method refactor(ChatGPTClient): order messages before buildPrompt is called, TODO: add convoSumBuffMemory logic * fix: undefined handling and summarizing only when shouldRefineContext is true * chore(BaseClient): fix test results omitting system role for summaries and test edge case * chore: export summaryBuffer from index file * refactor(OpenAIClient/BaseClient): move refineMessages to subclass, implement LLM initialization for summaryBuffer * feat: add OPENAI_SUMMARIZE to enable summarizing, refactor: rename client prop 'shouldRefineContext' to 'shouldSummarize', change contextStrategy value to 'summarize' from 'refine' * refactor: rename refineMessages method to summarizeMessages for clarity * chore: clarify summary future intent in .env.example * refactor(initializeLLM): handle case for either 'model' or 'modelName' being passed * feat(gptPlugins): enable summarization for plugins * refactor(gptPlugins): utilize new initializeLLM method and formatting methods for messages, use payload array for currentMessages and assign pastMessages sooner * refactor(agents): use ConversationSummaryBufferMemory for both agent types * refactor(formatMessage): optimize original method for langchain, add helper function for langchain messages, add JSDocs and tests * refactor(summaryBuffer): add helper to createSummaryBufferMemory, and use new formatting helpers * fix: forgot to spread formatMessages also took opportunity to pluralize filename * refactor: pass memory to tools, namely openapi specs. not used and may never be used by new method but added for testing * ci(formatMessages): add more exhaustive checks for langchain messages * feat: add debug env var for OpenAI * chore: delete unnecessary comments * chore: add extra note about summary feature * fix: remove tokenCount from payload instructions * fix: test fail * fix: only pass instructions to payload when defined or not empty object * refactor: fromPromptMessages is deprecated, use renamed method fromMessages * refactor: use 'includes' instead of 'startsWith' for extended OpenRouter compatibility * fix(PluginsClient.buildPromptBody): handle undefined message strings * chore: log langchain titling error * feat: getModelMaxTokens helper * feat: tokenSplit helper * feat: summary prompts updated * fix: optimize _CUT_OFF_SUMMARIZER prompt * refactor(summaryBuffer): use custom summary prompt, allow prompt to be passed, pass humanPrefix and aiPrefix to memory, along with any future variables, rename messagesToRefine to context * fix(summaryBuffer): handle edge case where messagesToRefine exceeds summary context, refactor(BaseClient): allow custom maxContextTokens to be passed to getMessagesWithinTokenLimit, add defined check before unshifting summaryMessage, update shouldSummarize based on this refactor(OpenAIClient): use getModelMaxTokens, use cut-off message method for summary if no messages were left after pruning * fix(handleContextStrategy): handle case where incoming prompt is bigger than model context * chore: rename refinedContent to splitText * chore: remove unnecessary debug log
This commit is contained in:
parent
be73deddcc
commit
317a1bd8da
46 changed files with 1410 additions and 440 deletions
|
|
@ -1,11 +1,11 @@
|
|||
const OpenAIClient = require('./OpenAIClient');
|
||||
const { CallbackManager } = require('langchain/callbacks');
|
||||
const { HumanChatMessage, AIChatMessage } = require('langchain/schema');
|
||||
const { initializeCustomAgent, initializeFunctionsAgent } = require('./agents');
|
||||
const { addImages, buildErrorInput, buildPromptPrefix } = require('./output_parsers');
|
||||
// const { createSummaryBufferMemory } = require('./memory');
|
||||
const { formatLangChainMessages } = require('./prompts');
|
||||
const { SelfReflectionTool } = require('./tools');
|
||||
const { loadTools } = require('./tools/util');
|
||||
const { createLLM } = require('./llm');
|
||||
|
||||
class PluginsClient extends OpenAIClient {
|
||||
constructor(apiKey, options = {}) {
|
||||
|
|
@ -50,9 +50,9 @@ class PluginsClient extends OpenAIClient {
|
|||
}
|
||||
|
||||
getFunctionModelName(input) {
|
||||
if (input.startsWith('gpt-3.5-turbo')) {
|
||||
if (input.includes('gpt-3.5-turbo')) {
|
||||
return 'gpt-3.5-turbo';
|
||||
} else if (input.startsWith('gpt-4')) {
|
||||
} else if (input.includes('gpt-4')) {
|
||||
return 'gpt-4';
|
||||
} else {
|
||||
return 'gpt-3.5-turbo';
|
||||
|
|
@ -73,28 +73,7 @@ class PluginsClient extends OpenAIClient {
|
|||
temperature: this.agentOptions.temperature,
|
||||
};
|
||||
|
||||
const configOptions = {};
|
||||
|
||||
if (this.langchainProxy) {
|
||||
configOptions.basePath = this.langchainProxy;
|
||||
}
|
||||
|
||||
if (this.useOpenRouter) {
|
||||
configOptions.basePath = 'https://openrouter.ai/api/v1';
|
||||
configOptions.baseOptions = {
|
||||
headers: {
|
||||
'HTTP-Referer': 'https://librechat.ai',
|
||||
'X-Title': 'LibreChat',
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
const model = createLLM({
|
||||
modelOptions,
|
||||
configOptions,
|
||||
openAIApiKey: this.openAIApiKey,
|
||||
azure: this.azure,
|
||||
});
|
||||
const model = this.initializeLLM(modelOptions);
|
||||
|
||||
if (this.options.debug) {
|
||||
console.debug(
|
||||
|
|
@ -102,12 +81,22 @@ class PluginsClient extends OpenAIClient {
|
|||
);
|
||||
}
|
||||
|
||||
// Map Messages to Langchain format
|
||||
const pastMessages = formatLangChainMessages(this.currentMessages.slice(0, -1), {
|
||||
userName: this.options?.name,
|
||||
});
|
||||
this.options.debug && console.debug('pastMessages: ', pastMessages);
|
||||
|
||||
// TODO: implement new token efficient way of processing openAPI plugins so they can "share" memory with agent
|
||||
// const memory = createSummaryBufferMemory({ llm: this.initializeLLM(modelOptions), messages: pastMessages });
|
||||
|
||||
this.tools = await loadTools({
|
||||
user,
|
||||
model,
|
||||
tools: this.options.tools,
|
||||
functions: this.functionsAgent,
|
||||
options: {
|
||||
// memory,
|
||||
openAIApiKey: this.openAIApiKey,
|
||||
conversationId: this.conversationId,
|
||||
debug: this.options?.debug,
|
||||
|
|
@ -140,15 +129,6 @@ class PluginsClient extends OpenAIClient {
|
|||
}
|
||||
};
|
||||
|
||||
// Map Messages to Langchain format
|
||||
const pastMessages = this.currentMessages
|
||||
.slice(0, -1)
|
||||
.map((msg) =>
|
||||
msg?.isCreatedByUser || msg?.role?.toLowerCase() === 'user'
|
||||
? new HumanChatMessage(msg.text)
|
||||
: new AIChatMessage(msg.text),
|
||||
);
|
||||
|
||||
// initialize agent
|
||||
const initializer = this.functionsAgent ? initializeFunctionsAgent : initializeCustomAgent;
|
||||
this.executor = await initializer({
|
||||
|
|
@ -272,7 +252,6 @@ class PluginsClient extends OpenAIClient {
|
|||
prompt: payload,
|
||||
tokenCountMap,
|
||||
promptTokens,
|
||||
messages,
|
||||
} = await this.buildMessages(
|
||||
this.currentMessages,
|
||||
userMessage.messageId,
|
||||
|
|
@ -288,17 +267,12 @@ class PluginsClient extends OpenAIClient {
|
|||
userMessage.tokenCount = tokenCountMap[userMessage.messageId];
|
||||
console.log('userMessage.tokenCount', userMessage.tokenCount);
|
||||
}
|
||||
payload = payload.map((message) => {
|
||||
const messageWithoutTokenCount = message;
|
||||
delete messageWithoutTokenCount.tokenCount;
|
||||
return messageWithoutTokenCount;
|
||||
});
|
||||
this.handleTokenCountMap(tokenCountMap);
|
||||
}
|
||||
|
||||
this.result = {};
|
||||
if (messages) {
|
||||
this.currentMessages = messages;
|
||||
if (payload) {
|
||||
this.currentMessages = payload;
|
||||
}
|
||||
await this.saveMessageToDatabase(userMessage, saveOptions, user);
|
||||
const responseMessage = {
|
||||
|
|
@ -431,7 +405,9 @@ class PluginsClient extends OpenAIClient {
|
|||
const message = orderedMessages.pop();
|
||||
const isCreatedByUser = message.isCreatedByUser || message.role?.toLowerCase() === 'user';
|
||||
const roleLabel = isCreatedByUser ? this.userLabel : this.chatGptLabel;
|
||||
let messageString = `${this.startToken}${roleLabel}:\n${message.text}${this.endToken}\n`;
|
||||
let messageString = `${this.startToken}${roleLabel}:\n${
|
||||
message.text ?? message.content ?? ''
|
||||
}${this.endToken}\n`;
|
||||
let newPromptBody = `${messageString}${promptBody}`;
|
||||
|
||||
const tokenCountForMessage = this.getTokenCount(messageString);
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue