mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-21 02:40:14 +01:00
🧠 feat: User Memories for Conversational Context (#7760)
* 🧠 feat: User Memories for Conversational Context
chore: mcp typing, use `t`
WIP: first pass, Memories UI
- Added MemoryViewer component for displaying, editing, and deleting user memories.
- Integrated data provider hooks for fetching, updating, and deleting memories.
- Implemented pagination and loading states for better user experience.
- Created unit tests for MemoryViewer to ensure functionality and interaction with data provider.
- Updated translation files to include new UI strings related to memories.
chore: move mcp-related files to own directory
chore: rename librechat-mcp to librechat-api
WIP: first pass, memory processing and data schemas
chore: linting in fileSearch.js query description
chore: rename librechat-api to @librechat/api across the project
WIP: first pass, functional memory agent
feat: add MemoryEditDialog and MemoryViewer components for managing user memories
- Introduced MemoryEditDialog for editing memory entries with validation and toast notifications.
- Updated MemoryViewer to support editing and deleting memories, including pagination and loading states.
- Enhanced data provider to handle memory updates with optional original key for better management.
- Added new localization strings for memory-related UI elements.
feat: add memory permissions management
- Implemented memory permissions in the backend, allowing roles to have specific permissions for using, creating, updating, and reading memories.
- Added new API endpoints for updating memory permissions associated with roles.
- Created a new AdminSettings component for managing memory permissions in the frontend.
- Integrated memory permissions into the existing roles and permissions schemas.
- Updated the interface to include memory settings and permissions.
- Enhanced the MemoryViewer component to conditionally render admin settings based on user roles.
- Added localization support for memory permissions in the translation files.
feat: move AdminSettings component to a new position in MemoryViewer for better visibility
refactor: clean up commented code in MemoryViewer component
feat: enhance MemoryViewer with search functionality and improve MemoryEditDialog integration
- Added a search input to filter memories in the MemoryViewer component.
- Refactored MemoryEditDialog to accept children for better customization.
- Updated MemoryViewer to utilize the new EditMemoryButton and DeleteMemoryButton components for editing and deleting memories.
- Improved localization support by adding new strings for memory filtering and deletion confirmation.
refactor: optimize memory filtering in MemoryViewer using match-sorter
- Replaced manual filtering logic with match-sorter for improved search functionality.
- Enhanced performance and readability of the filteredMemories computation.
feat: enhance MemoryEditDialog with triggerRef and improve updateMemory mutation handling
feat: implement access control for MemoryEditDialog and MemoryViewer components
refactor: remove commented out code and create runMemory method
refactor: rename role based files
feat: implement access control for memory usage in AgentClient
refactor: simplify checkVisionRequest method in AgentClient by removing commented-out code
refactor: make `agents` dir in api package
refactor: migrate Azure utilities to TypeScript and consolidate imports
refactor: move sanitizeFilename function to a new file and update imports, add related tests
refactor: update LLM configuration types and consolidate Azure options in the API package
chore: linting
chore: import order
refactor: replace getLLMConfig with getOpenAIConfig and remove unused LLM configuration file
chore: update winston-daily-rotate-file to version 5.0.0 and add object-hash dependency in package-lock.json
refactor: move primeResources and optionalChainWithEmptyCheck functions to resources.ts and update imports
refactor: move createRun function to a new run.ts file and update related imports
fix: ensure safeAttachments is correctly typed as an array of TFile
chore: add node-fetch dependency and refactor fetch-related functions into packages/api/utils, removing the old generators file
refactor: enhance TEndpointOption type by using Pick to streamline endpoint fields and add new properties for model parameters and client options
feat: implement initializeOpenAIOptions function and update OpenAI types for enhanced configuration handling
fix: update types due to new TEndpointOption typing
fix: ensure safe access to group parameters in initializeOpenAIOptions function
fix: remove redundant API key validation comment in initializeOpenAIOptions function
refactor: rename initializeOpenAIOptions to initializeOpenAI for consistency and update related documentation
refactor: decouple req.body fields and tool loading from initializeAgentOptions
chore: linting
refactor: adjust column widths in MemoryViewer for improved layout
refactor: simplify agent initialization by creating loadAgent function and removing unused code
feat: add memory configuration loading and validation functions
WIP: first pass, memory processing with config
feat: implement memory callback and artifact handling
feat: implement memory artifacts display and processing updates
feat: add memory configuration options and schema validation for validKeys
fix: update MemoryEditDialog and MemoryViewer to handle memory state and display improvements
refactor: remove padding from BookmarkTable and MemoryViewer headers for consistent styling
WIP: initial tokenLimit config and move Tokenizer to @librechat/api
refactor: update mongoMeili plugin methods to use callback for better error handling
feat: enhance memory management with token tracking and usage metrics
- Added token counting for memory entries to enforce limits and provide usage statistics.
- Updated memory retrieval and update routes to include total token usage and limit.
- Enhanced MemoryEditDialog and MemoryViewer components to display memory usage and token information.
- Refactored memory processing functions to handle token limits and provide feedback on memory capacity.
feat: implement memory artifact handling in attachment handler
- Enhanced useAttachmentHandler to process memory artifacts when receiving updates.
- Introduced handleMemoryArtifact utility to manage memory updates and deletions.
- Updated query client to reflect changes in memory state based on incoming data.
refactor: restructure web search key extraction logic
- Moved the logic for extracting API keys from the webSearchAuth configuration into a dedicated function, getWebSearchKeys.
- Updated webSearchKeys to utilize the new function for improved clarity and maintainability.
- Prevents build time errors
feat: add personalization settings and memory preferences management
- Introduced a new Personalization tab in settings to manage user memory preferences.
- Implemented API endpoints and client-side logic for updating memory preferences.
- Enhanced user interface components to reflect personalization options and memory usage.
- Updated permissions to allow users to opt out of memory features.
- Added localization support for new settings and messages related to personalization.
style: personalization switch class
feat: add PersonalizationIcon and align Side Panel UI
feat: implement memory creation functionality
- Added a new API endpoint for creating memory entries, including validation for key and value.
- Introduced MemoryCreateDialog component for user interface to facilitate memory creation.
- Integrated token limit checks to prevent exceeding user memory capacity.
- Updated MemoryViewer to include a button for opening the memory creation dialog.
- Enhanced localization support for new messages related to memory creation.
feat: enhance message processing with configurable window size
- Updated AgentClient to use a configurable message window size for processing messages.
- Introduced messageWindowSize option in memory configuration schema with a default value of 5.
- Improved logic for selecting messages to process based on the configured window size.
chore: update librechat-data-provider version to 0.7.87 in package.json and package-lock.json
chore: remove OpenAPIPlugin and its associated tests
chore: remove MIGRATION_README.md as migration tasks are completed
ci: fix backend tests
chore: remove unused translation keys from localization file
chore: remove problematic test file and unused var in AgentClient
chore: remove unused import and import directly for JSDoc
* feat: add api package build stage in Dockerfile for improved modularity
* docs: reorder build steps in contributing guide for clarity
This commit is contained in:
parent
cd7dd576c1
commit
29ef91b4dd
170 changed files with 5700 additions and 3632 deletions
196
api/server/services/Endpoints/agents/agent.js
Normal file
196
api/server/services/Endpoints/agents/agent.js
Normal file
|
|
@ -0,0 +1,196 @@
|
|||
const { Providers } = require('@librechat/agents');
|
||||
const { primeResources, optionalChainWithEmptyCheck } = require('@librechat/api');
|
||||
const {
|
||||
ErrorTypes,
|
||||
EModelEndpoint,
|
||||
EToolResources,
|
||||
replaceSpecialVars,
|
||||
providerEndpointMap,
|
||||
} = require('librechat-data-provider');
|
||||
const initAnthropic = require('~/server/services/Endpoints/anthropic/initialize');
|
||||
const getBedrockOptions = require('~/server/services/Endpoints/bedrock/options');
|
||||
const initOpenAI = require('~/server/services/Endpoints/openAI/initialize');
|
||||
const initCustom = require('~/server/services/Endpoints/custom/initialize');
|
||||
const initGoogle = require('~/server/services/Endpoints/google/initialize');
|
||||
const generateArtifactsPrompt = require('~/app/clients/prompts/artifacts');
|
||||
const { getCustomEndpointConfig } = require('~/server/services/Config');
|
||||
const { processFiles } = require('~/server/services/Files/process');
|
||||
const { getConvoFiles } = require('~/models/Conversation');
|
||||
const { getToolFilesByIds } = require('~/models/File');
|
||||
const { getModelMaxTokens } = require('~/utils');
|
||||
const { getFiles } = require('~/models/File');
|
||||
|
||||
const providerConfigMap = {
|
||||
[Providers.XAI]: initCustom,
|
||||
[Providers.OLLAMA]: initCustom,
|
||||
[Providers.DEEPSEEK]: initCustom,
|
||||
[Providers.OPENROUTER]: initCustom,
|
||||
[EModelEndpoint.openAI]: initOpenAI,
|
||||
[EModelEndpoint.google]: initGoogle,
|
||||
[EModelEndpoint.azureOpenAI]: initOpenAI,
|
||||
[EModelEndpoint.anthropic]: initAnthropic,
|
||||
[EModelEndpoint.bedrock]: getBedrockOptions,
|
||||
};
|
||||
|
||||
/**
|
||||
* @param {object} params
|
||||
* @param {ServerRequest} params.req
|
||||
* @param {ServerResponse} params.res
|
||||
* @param {Agent} params.agent
|
||||
* @param {string | null} [params.conversationId]
|
||||
* @param {Array<IMongoFile>} [params.requestFiles]
|
||||
* @param {typeof import('~/server/services/ToolService').loadAgentTools | undefined} [params.loadTools]
|
||||
* @param {TEndpointOption} [params.endpointOption]
|
||||
* @param {Set<string>} [params.allowedProviders]
|
||||
* @param {boolean} [params.isInitialAgent]
|
||||
* @returns {Promise<Agent & { tools: StructuredTool[], attachments: Array<MongoFile>, toolContextMap: Record<string, unknown>, maxContextTokens: number }>}
|
||||
*/
|
||||
const initializeAgent = async ({
|
||||
req,
|
||||
res,
|
||||
agent,
|
||||
loadTools,
|
||||
requestFiles,
|
||||
conversationId,
|
||||
endpointOption,
|
||||
allowedProviders,
|
||||
isInitialAgent = false,
|
||||
}) => {
|
||||
if (allowedProviders.size > 0 && !allowedProviders.has(agent.provider)) {
|
||||
throw new Error(
|
||||
`{ "type": "${ErrorTypes.INVALID_AGENT_PROVIDER}", "info": "${agent.provider}" }`,
|
||||
);
|
||||
}
|
||||
let currentFiles;
|
||||
|
||||
if (
|
||||
isInitialAgent &&
|
||||
conversationId != null &&
|
||||
(agent.model_parameters?.resendFiles ?? true) === true
|
||||
) {
|
||||
const fileIds = (await getConvoFiles(conversationId)) ?? [];
|
||||
/** @type {Set<EToolResources>} */
|
||||
const toolResourceSet = new Set();
|
||||
for (const tool of agent.tools) {
|
||||
if (EToolResources[tool]) {
|
||||
toolResourceSet.add(EToolResources[tool]);
|
||||
}
|
||||
}
|
||||
const toolFiles = await getToolFilesByIds(fileIds, toolResourceSet);
|
||||
if (requestFiles.length || toolFiles.length) {
|
||||
currentFiles = await processFiles(requestFiles.concat(toolFiles));
|
||||
}
|
||||
} else if (isInitialAgent && requestFiles.length) {
|
||||
currentFiles = await processFiles(requestFiles);
|
||||
}
|
||||
|
||||
const { attachments, tool_resources } = await primeResources({
|
||||
req,
|
||||
getFiles,
|
||||
attachments: currentFiles,
|
||||
tool_resources: agent.tool_resources,
|
||||
requestFileSet: new Set(requestFiles?.map((file) => file.file_id)),
|
||||
});
|
||||
|
||||
const provider = agent.provider;
|
||||
const { tools, toolContextMap } =
|
||||
(await loadTools?.({
|
||||
req,
|
||||
res,
|
||||
provider,
|
||||
agentId: agent.id,
|
||||
tools: agent.tools,
|
||||
model: agent.model,
|
||||
tool_resources,
|
||||
})) ?? {};
|
||||
|
||||
agent.endpoint = provider;
|
||||
let getOptions = providerConfigMap[provider];
|
||||
if (!getOptions && providerConfigMap[provider.toLowerCase()] != null) {
|
||||
agent.provider = provider.toLowerCase();
|
||||
getOptions = providerConfigMap[agent.provider];
|
||||
} else if (!getOptions) {
|
||||
const customEndpointConfig = await getCustomEndpointConfig(provider);
|
||||
if (!customEndpointConfig) {
|
||||
throw new Error(`Provider ${provider} not supported`);
|
||||
}
|
||||
getOptions = initCustom;
|
||||
agent.provider = Providers.OPENAI;
|
||||
}
|
||||
const model_parameters = Object.assign(
|
||||
{},
|
||||
agent.model_parameters ?? { model: agent.model },
|
||||
isInitialAgent === true ? endpointOption?.model_parameters : {},
|
||||
);
|
||||
const _endpointOption =
|
||||
isInitialAgent === true
|
||||
? Object.assign({}, endpointOption, { model_parameters })
|
||||
: { model_parameters };
|
||||
|
||||
const options = await getOptions({
|
||||
req,
|
||||
res,
|
||||
optionsOnly: true,
|
||||
overrideEndpoint: provider,
|
||||
overrideModel: agent.model,
|
||||
endpointOption: _endpointOption,
|
||||
});
|
||||
|
||||
if (
|
||||
agent.endpoint === EModelEndpoint.azureOpenAI &&
|
||||
options.llmConfig?.azureOpenAIApiInstanceName == null
|
||||
) {
|
||||
agent.provider = Providers.OPENAI;
|
||||
}
|
||||
|
||||
if (options.provider != null) {
|
||||
agent.provider = options.provider;
|
||||
}
|
||||
|
||||
/** @type {import('@librechat/agents').ClientOptions} */
|
||||
agent.model_parameters = Object.assign(model_parameters, options.llmConfig);
|
||||
if (options.configOptions) {
|
||||
agent.model_parameters.configuration = options.configOptions;
|
||||
}
|
||||
|
||||
if (!agent.model_parameters.model) {
|
||||
agent.model_parameters.model = agent.model;
|
||||
}
|
||||
|
||||
if (agent.instructions && agent.instructions !== '') {
|
||||
agent.instructions = replaceSpecialVars({
|
||||
text: agent.instructions,
|
||||
user: req.user,
|
||||
});
|
||||
}
|
||||
|
||||
if (typeof agent.artifacts === 'string' && agent.artifacts !== '') {
|
||||
agent.additional_instructions = generateArtifactsPrompt({
|
||||
endpoint: agent.provider,
|
||||
artifacts: agent.artifacts,
|
||||
});
|
||||
}
|
||||
|
||||
const tokensModel =
|
||||
agent.provider === EModelEndpoint.azureOpenAI ? agent.model : agent.model_parameters.model;
|
||||
const maxTokens = optionalChainWithEmptyCheck(
|
||||
agent.model_parameters.maxOutputTokens,
|
||||
agent.model_parameters.maxTokens,
|
||||
0,
|
||||
);
|
||||
const maxContextTokens = optionalChainWithEmptyCheck(
|
||||
agent.model_parameters.maxContextTokens,
|
||||
agent.max_context_tokens,
|
||||
getModelMaxTokens(tokensModel, providerEndpointMap[provider]),
|
||||
4096,
|
||||
);
|
||||
return {
|
||||
...agent,
|
||||
tools,
|
||||
attachments,
|
||||
toolContextMap,
|
||||
maxContextTokens: (maxContextTokens - maxTokens) * 0.9,
|
||||
};
|
||||
};
|
||||
|
||||
module.exports = { initializeAgent };
|
||||
|
|
@ -1,294 +1,41 @@
|
|||
const { createContentAggregator, Providers } = require('@librechat/agents');
|
||||
const {
|
||||
Constants,
|
||||
ErrorTypes,
|
||||
EModelEndpoint,
|
||||
EToolResources,
|
||||
getResponseSender,
|
||||
AgentCapabilities,
|
||||
replaceSpecialVars,
|
||||
providerEndpointMap,
|
||||
} = require('librechat-data-provider');
|
||||
const { logger } = require('@librechat/data-schemas');
|
||||
const { createContentAggregator } = require('@librechat/agents');
|
||||
const { Constants, EModelEndpoint, getResponseSender } = require('librechat-data-provider');
|
||||
const {
|
||||
getDefaultHandlers,
|
||||
createToolEndCallback,
|
||||
} = require('~/server/controllers/agents/callbacks');
|
||||
const initAnthropic = require('~/server/services/Endpoints/anthropic/initialize');
|
||||
const getBedrockOptions = require('~/server/services/Endpoints/bedrock/options');
|
||||
const initOpenAI = require('~/server/services/Endpoints/openAI/initialize');
|
||||
const initCustom = require('~/server/services/Endpoints/custom/initialize');
|
||||
const initGoogle = require('~/server/services/Endpoints/google/initialize');
|
||||
const generateArtifactsPrompt = require('~/app/clients/prompts/artifacts');
|
||||
const { getCustomEndpointConfig } = require('~/server/services/Config');
|
||||
const { processFiles } = require('~/server/services/Files/process');
|
||||
const { initializeAgent } = require('~/server/services/Endpoints/agents/agent');
|
||||
const { loadAgentTools } = require('~/server/services/ToolService');
|
||||
const AgentClient = require('~/server/controllers/agents/client');
|
||||
const { getConvoFiles } = require('~/models/Conversation');
|
||||
const { getToolFilesByIds } = require('~/models/File');
|
||||
const { getModelMaxTokens } = require('~/utils');
|
||||
const { getAgent } = require('~/models/Agent');
|
||||
const { getFiles } = require('~/models/File');
|
||||
const { logger } = require('~/config');
|
||||
|
||||
const providerConfigMap = {
|
||||
[Providers.XAI]: initCustom,
|
||||
[Providers.OLLAMA]: initCustom,
|
||||
[Providers.DEEPSEEK]: initCustom,
|
||||
[Providers.OPENROUTER]: initCustom,
|
||||
[EModelEndpoint.openAI]: initOpenAI,
|
||||
[EModelEndpoint.google]: initGoogle,
|
||||
[EModelEndpoint.azureOpenAI]: initOpenAI,
|
||||
[EModelEndpoint.anthropic]: initAnthropic,
|
||||
[EModelEndpoint.bedrock]: getBedrockOptions,
|
||||
};
|
||||
|
||||
/**
|
||||
* @param {Object} params
|
||||
* @param {ServerRequest} params.req
|
||||
* @param {Promise<Array<MongoFile | null>> | undefined} [params.attachments]
|
||||
* @param {Set<string>} params.requestFileSet
|
||||
* @param {AgentToolResources | undefined} [params.tool_resources]
|
||||
* @returns {Promise<{ attachments: Array<MongoFile | undefined> | undefined, tool_resources: AgentToolResources | undefined }>}
|
||||
*/
|
||||
const primeResources = async ({
|
||||
req,
|
||||
attachments: _attachments,
|
||||
tool_resources: _tool_resources,
|
||||
requestFileSet,
|
||||
}) => {
|
||||
try {
|
||||
/** @type {Array<MongoFile | undefined> | undefined} */
|
||||
let attachments;
|
||||
const tool_resources = _tool_resources ?? {};
|
||||
const isOCREnabled = (req.app.locals?.[EModelEndpoint.agents]?.capabilities ?? []).includes(
|
||||
AgentCapabilities.ocr,
|
||||
);
|
||||
if (tool_resources[EToolResources.ocr]?.file_ids && isOCREnabled) {
|
||||
const context = await getFiles(
|
||||
{
|
||||
file_id: { $in: tool_resources.ocr.file_ids },
|
||||
},
|
||||
{},
|
||||
{},
|
||||
);
|
||||
attachments = (attachments ?? []).concat(context);
|
||||
function createToolLoader() {
|
||||
/**
|
||||
* @param {object} params
|
||||
* @param {ServerRequest} params.req
|
||||
* @param {ServerResponse} params.res
|
||||
* @param {string} params.agentId
|
||||
* @param {string[]} params.tools
|
||||
* @param {string} params.provider
|
||||
* @param {string} params.model
|
||||
* @param {AgentToolResources} params.tool_resources
|
||||
* @returns {Promise<{ tools: StructuredTool[], toolContextMap: Record<string, unknown> } | undefined>}
|
||||
*/
|
||||
return async function loadTools({ req, res, agentId, tools, provider, model, tool_resources }) {
|
||||
const agent = { id: agentId, tools, provider, model };
|
||||
try {
|
||||
return await loadAgentTools({
|
||||
req,
|
||||
res,
|
||||
agent,
|
||||
tool_resources,
|
||||
});
|
||||
} catch (error) {
|
||||
logger.error('Error loading tools for agent ' + agentId, error);
|
||||
}
|
||||
if (!_attachments) {
|
||||
return { attachments, tool_resources };
|
||||
}
|
||||
/** @type {Array<MongoFile | undefined> | undefined} */
|
||||
const files = await _attachments;
|
||||
if (!attachments) {
|
||||
/** @type {Array<MongoFile | undefined>} */
|
||||
attachments = [];
|
||||
}
|
||||
|
||||
for (const file of files) {
|
||||
if (!file) {
|
||||
continue;
|
||||
}
|
||||
if (file.metadata?.fileIdentifier) {
|
||||
const execute_code = tool_resources[EToolResources.execute_code] ?? {};
|
||||
if (!execute_code.files) {
|
||||
tool_resources[EToolResources.execute_code] = { ...execute_code, files: [] };
|
||||
}
|
||||
tool_resources[EToolResources.execute_code].files.push(file);
|
||||
} else if (file.embedded === true) {
|
||||
const file_search = tool_resources[EToolResources.file_search] ?? {};
|
||||
if (!file_search.files) {
|
||||
tool_resources[EToolResources.file_search] = { ...file_search, files: [] };
|
||||
}
|
||||
tool_resources[EToolResources.file_search].files.push(file);
|
||||
} else if (
|
||||
requestFileSet.has(file.file_id) &&
|
||||
file.type.startsWith('image') &&
|
||||
file.height &&
|
||||
file.width
|
||||
) {
|
||||
const image_edit = tool_resources[EToolResources.image_edit] ?? {};
|
||||
if (!image_edit.files) {
|
||||
tool_resources[EToolResources.image_edit] = { ...image_edit, files: [] };
|
||||
}
|
||||
tool_resources[EToolResources.image_edit].files.push(file);
|
||||
}
|
||||
|
||||
attachments.push(file);
|
||||
}
|
||||
return { attachments, tool_resources };
|
||||
} catch (error) {
|
||||
logger.error('Error priming resources', error);
|
||||
return { attachments: _attachments, tool_resources: _tool_resources };
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @param {...string | number} values
|
||||
* @returns {string | number | undefined}
|
||||
*/
|
||||
function optionalChainWithEmptyCheck(...values) {
|
||||
for (const value of values) {
|
||||
if (value !== undefined && value !== null && value !== '') {
|
||||
return value;
|
||||
}
|
||||
}
|
||||
return values[values.length - 1];
|
||||
}
|
||||
|
||||
/**
|
||||
* @param {object} params
|
||||
* @param {ServerRequest} params.req
|
||||
* @param {ServerResponse} params.res
|
||||
* @param {Agent} params.agent
|
||||
* @param {Set<string>} [params.allowedProviders]
|
||||
* @param {object} [params.endpointOption]
|
||||
* @param {boolean} [params.isInitialAgent]
|
||||
* @returns {Promise<Agent>}
|
||||
*/
|
||||
const initializeAgentOptions = async ({
|
||||
req,
|
||||
res,
|
||||
agent,
|
||||
endpointOption,
|
||||
allowedProviders,
|
||||
isInitialAgent = false,
|
||||
}) => {
|
||||
if (allowedProviders.size > 0 && !allowedProviders.has(agent.provider)) {
|
||||
throw new Error(
|
||||
`{ "type": "${ErrorTypes.INVALID_AGENT_PROVIDER}", "info": "${agent.provider}" }`,
|
||||
);
|
||||
}
|
||||
let currentFiles;
|
||||
/** @type {Array<MongoFile>} */
|
||||
const requestFiles = req.body.files ?? [];
|
||||
if (
|
||||
isInitialAgent &&
|
||||
req.body.conversationId != null &&
|
||||
(agent.model_parameters?.resendFiles ?? true) === true
|
||||
) {
|
||||
const fileIds = (await getConvoFiles(req.body.conversationId)) ?? [];
|
||||
/** @type {Set<EToolResources>} */
|
||||
const toolResourceSet = new Set();
|
||||
for (const tool of agent.tools) {
|
||||
if (EToolResources[tool]) {
|
||||
toolResourceSet.add(EToolResources[tool]);
|
||||
}
|
||||
}
|
||||
const toolFiles = await getToolFilesByIds(fileIds, toolResourceSet);
|
||||
if (requestFiles.length || toolFiles.length) {
|
||||
currentFiles = await processFiles(requestFiles.concat(toolFiles));
|
||||
}
|
||||
} else if (isInitialAgent && requestFiles.length) {
|
||||
currentFiles = await processFiles(requestFiles);
|
||||
}
|
||||
|
||||
const { attachments, tool_resources } = await primeResources({
|
||||
req,
|
||||
attachments: currentFiles,
|
||||
tool_resources: agent.tool_resources,
|
||||
requestFileSet: new Set(requestFiles.map((file) => file.file_id)),
|
||||
});
|
||||
|
||||
const provider = agent.provider;
|
||||
const { tools, toolContextMap } = await loadAgentTools({
|
||||
req,
|
||||
res,
|
||||
agent: {
|
||||
id: agent.id,
|
||||
tools: agent.tools,
|
||||
provider,
|
||||
model: agent.model,
|
||||
},
|
||||
tool_resources,
|
||||
});
|
||||
|
||||
agent.endpoint = provider;
|
||||
let getOptions = providerConfigMap[provider];
|
||||
if (!getOptions && providerConfigMap[provider.toLowerCase()] != null) {
|
||||
agent.provider = provider.toLowerCase();
|
||||
getOptions = providerConfigMap[agent.provider];
|
||||
} else if (!getOptions) {
|
||||
const customEndpointConfig = await getCustomEndpointConfig(provider);
|
||||
if (!customEndpointConfig) {
|
||||
throw new Error(`Provider ${provider} not supported`);
|
||||
}
|
||||
getOptions = initCustom;
|
||||
agent.provider = Providers.OPENAI;
|
||||
}
|
||||
const model_parameters = Object.assign(
|
||||
{},
|
||||
agent.model_parameters ?? { model: agent.model },
|
||||
isInitialAgent === true ? endpointOption?.model_parameters : {},
|
||||
);
|
||||
const _endpointOption =
|
||||
isInitialAgent === true
|
||||
? Object.assign({}, endpointOption, { model_parameters })
|
||||
: { model_parameters };
|
||||
|
||||
const options = await getOptions({
|
||||
req,
|
||||
res,
|
||||
optionsOnly: true,
|
||||
overrideEndpoint: provider,
|
||||
overrideModel: agent.model,
|
||||
endpointOption: _endpointOption,
|
||||
});
|
||||
|
||||
if (
|
||||
agent.endpoint === EModelEndpoint.azureOpenAI &&
|
||||
options.llmConfig?.azureOpenAIApiInstanceName == null
|
||||
) {
|
||||
agent.provider = Providers.OPENAI;
|
||||
}
|
||||
|
||||
if (options.provider != null) {
|
||||
agent.provider = options.provider;
|
||||
}
|
||||
|
||||
/** @type {import('@librechat/agents').ClientOptions} */
|
||||
agent.model_parameters = Object.assign(model_parameters, options.llmConfig);
|
||||
if (options.configOptions) {
|
||||
agent.model_parameters.configuration = options.configOptions;
|
||||
}
|
||||
|
||||
if (!agent.model_parameters.model) {
|
||||
agent.model_parameters.model = agent.model;
|
||||
}
|
||||
|
||||
if (agent.instructions && agent.instructions !== '') {
|
||||
agent.instructions = replaceSpecialVars({
|
||||
text: agent.instructions,
|
||||
user: req.user,
|
||||
});
|
||||
}
|
||||
|
||||
if (typeof agent.artifacts === 'string' && agent.artifacts !== '') {
|
||||
agent.additional_instructions = generateArtifactsPrompt({
|
||||
endpoint: agent.provider,
|
||||
artifacts: agent.artifacts,
|
||||
});
|
||||
}
|
||||
|
||||
const tokensModel =
|
||||
agent.provider === EModelEndpoint.azureOpenAI ? agent.model : agent.model_parameters.model;
|
||||
const maxTokens = optionalChainWithEmptyCheck(
|
||||
agent.model_parameters.maxOutputTokens,
|
||||
agent.model_parameters.maxTokens,
|
||||
0,
|
||||
);
|
||||
const maxContextTokens = optionalChainWithEmptyCheck(
|
||||
agent.model_parameters.maxContextTokens,
|
||||
agent.max_context_tokens,
|
||||
getModelMaxTokens(tokensModel, providerEndpointMap[provider]),
|
||||
4096,
|
||||
);
|
||||
return {
|
||||
...agent,
|
||||
tools,
|
||||
attachments,
|
||||
toolContextMap,
|
||||
maxContextTokens: (maxContextTokens - maxTokens) * 0.9,
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
const initializeClient = async ({ req, res, endpointOption }) => {
|
||||
if (!endpointOption) {
|
||||
|
|
@ -313,7 +60,6 @@ const initializeClient = async ({ req, res, endpointOption }) => {
|
|||
throw new Error('No agent promise provided');
|
||||
}
|
||||
|
||||
// Initialize primary agent
|
||||
const primaryAgent = await endpointOption.agent;
|
||||
if (!primaryAgent) {
|
||||
throw new Error('Agent not found');
|
||||
|
|
@ -323,10 +69,18 @@ const initializeClient = async ({ req, res, endpointOption }) => {
|
|||
/** @type {Set<string>} */
|
||||
const allowedProviders = new Set(req?.app?.locals?.[EModelEndpoint.agents]?.allowedProviders);
|
||||
|
||||
// Handle primary agent
|
||||
const primaryConfig = await initializeAgentOptions({
|
||||
const loadTools = createToolLoader();
|
||||
/** @type {Array<MongoFile>} */
|
||||
const requestFiles = req.body.files ?? [];
|
||||
/** @type {string} */
|
||||
const conversationId = req.body.conversationId;
|
||||
|
||||
const primaryConfig = await initializeAgent({
|
||||
req,
|
||||
res,
|
||||
loadTools,
|
||||
requestFiles,
|
||||
conversationId,
|
||||
agent: primaryAgent,
|
||||
endpointOption,
|
||||
allowedProviders,
|
||||
|
|
@ -340,10 +94,13 @@ const initializeClient = async ({ req, res, endpointOption }) => {
|
|||
if (!agent) {
|
||||
throw new Error(`Agent ${agentId} not found`);
|
||||
}
|
||||
const config = await initializeAgentOptions({
|
||||
const config = await initializeAgent({
|
||||
req,
|
||||
res,
|
||||
agent,
|
||||
loadTools,
|
||||
requestFiles,
|
||||
conversationId,
|
||||
endpointOption,
|
||||
allowedProviders,
|
||||
});
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
const OpenAI = require('openai');
|
||||
const { HttpsProxyAgent } = require('https-proxy-agent');
|
||||
const { constructAzureURL, isUserProvided } = require('@librechat/api');
|
||||
const {
|
||||
ErrorTypes,
|
||||
EModelEndpoint,
|
||||
|
|
@ -12,8 +13,6 @@ const {
|
|||
checkUserKeyExpiry,
|
||||
} = require('~/server/services/UserService');
|
||||
const OpenAIClient = require('~/app/clients/OpenAIClient');
|
||||
const { isUserProvided } = require('~/server/utils');
|
||||
const { constructAzureURL } = require('~/utils');
|
||||
|
||||
class Files {
|
||||
constructor(client) {
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
const { HttpsProxyAgent } = require('https-proxy-agent');
|
||||
const { createHandleLLMNewToken } = require('@librechat/api');
|
||||
const {
|
||||
AuthType,
|
||||
Constants,
|
||||
|
|
@ -8,7 +9,6 @@ const {
|
|||
removeNullishValues,
|
||||
} = require('librechat-data-provider');
|
||||
const { getUserKey, checkUserKeyExpiry } = require('~/server/services/UserService');
|
||||
const { createHandleLLMNewToken } = require('~/app/clients/generators');
|
||||
|
||||
const getOptions = async ({ req, overrideModel, endpointOption }) => {
|
||||
const {
|
||||
|
|
|
|||
|
|
@ -6,10 +6,9 @@ const {
|
|||
extractEnvVariable,
|
||||
} = require('librechat-data-provider');
|
||||
const { Providers } = require('@librechat/agents');
|
||||
const { getOpenAIConfig, createHandleLLMNewToken } = require('@librechat/api');
|
||||
const { getUserKeyValues, checkUserKeyExpiry } = require('~/server/services/UserService');
|
||||
const { getLLMConfig } = require('~/server/services/Endpoints/openAI/llm');
|
||||
const { getCustomEndpointConfig } = require('~/server/services/Config');
|
||||
const { createHandleLLMNewToken } = require('~/app/clients/generators');
|
||||
const { fetchModels } = require('~/server/services/ModelService');
|
||||
const OpenAIClient = require('~/app/clients/OpenAIClient');
|
||||
const { isUserProvided } = require('~/server/utils');
|
||||
|
|
@ -144,7 +143,7 @@ const initializeClient = async ({ req, res, endpointOption, optionsOnly, overrid
|
|||
clientOptions,
|
||||
);
|
||||
clientOptions.modelOptions.user = req.user.id;
|
||||
const options = getLLMConfig(apiKey, clientOptions, endpoint);
|
||||
const options = getOpenAIConfig(apiKey, clientOptions, endpoint);
|
||||
if (!customOptions.streamRate) {
|
||||
return options;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,11 +1,10 @@
|
|||
const {
|
||||
EModelEndpoint,
|
||||
mapModelToAzureConfig,
|
||||
resolveHeaders,
|
||||
mapModelToAzureConfig,
|
||||
} = require('librechat-data-provider');
|
||||
const { isEnabled, isUserProvided, getAzureCredentials } = require('@librechat/api');
|
||||
const { getUserKeyValues, checkUserKeyExpiry } = require('~/server/services/UserService');
|
||||
const { isEnabled, isUserProvided } = require('~/server/utils');
|
||||
const { getAzureCredentials } = require('~/utils');
|
||||
const { PluginsClient } = require('~/app');
|
||||
|
||||
const initializeClient = async ({ req, res, endpointOption }) => {
|
||||
|
|
|
|||
|
|
@ -114,11 +114,11 @@ describe('gptPlugins/initializeClient', () => {
|
|||
test('should initialize PluginsClient with Azure credentials when PLUGINS_USE_AZURE is true', async () => {
|
||||
process.env.AZURE_API_KEY = 'test-azure-api-key';
|
||||
(process.env.AZURE_OPENAI_API_INSTANCE_NAME = 'some-value'),
|
||||
(process.env.AZURE_OPENAI_API_DEPLOYMENT_NAME = 'some-value'),
|
||||
(process.env.AZURE_OPENAI_API_VERSION = 'some-value'),
|
||||
(process.env.AZURE_OPENAI_API_COMPLETIONS_DEPLOYMENT_NAME = 'some-value'),
|
||||
(process.env.AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME = 'some-value'),
|
||||
(process.env.PLUGINS_USE_AZURE = 'true');
|
||||
(process.env.AZURE_OPENAI_API_DEPLOYMENT_NAME = 'some-value'),
|
||||
(process.env.AZURE_OPENAI_API_VERSION = 'some-value'),
|
||||
(process.env.AZURE_OPENAI_API_COMPLETIONS_DEPLOYMENT_NAME = 'some-value'),
|
||||
(process.env.AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME = 'some-value'),
|
||||
(process.env.PLUGINS_USE_AZURE = 'true');
|
||||
process.env.DEBUG_PLUGINS = 'false';
|
||||
process.env.OPENAI_SUMMARIZE = 'false';
|
||||
|
||||
|
|
|
|||
|
|
@ -4,12 +4,15 @@ const {
|
|||
resolveHeaders,
|
||||
mapModelToAzureConfig,
|
||||
} = require('librechat-data-provider');
|
||||
const {
|
||||
isEnabled,
|
||||
isUserProvided,
|
||||
getOpenAIConfig,
|
||||
getAzureCredentials,
|
||||
createHandleLLMNewToken,
|
||||
} = require('@librechat/api');
|
||||
const { getUserKeyValues, checkUserKeyExpiry } = require('~/server/services/UserService');
|
||||
const { getLLMConfig } = require('~/server/services/Endpoints/openAI/llm');
|
||||
const { createHandleLLMNewToken } = require('~/app/clients/generators');
|
||||
const { isEnabled, isUserProvided } = require('~/server/utils');
|
||||
const OpenAIClient = require('~/app/clients/OpenAIClient');
|
||||
const { getAzureCredentials } = require('~/utils');
|
||||
|
||||
const initializeClient = async ({
|
||||
req,
|
||||
|
|
@ -140,7 +143,7 @@ const initializeClient = async ({
|
|||
modelOptions.model = modelName;
|
||||
clientOptions = Object.assign({ modelOptions }, clientOptions);
|
||||
clientOptions.modelOptions.user = req.user.id;
|
||||
const options = getLLMConfig(apiKey, clientOptions);
|
||||
const options = getOpenAIConfig(apiKey, clientOptions);
|
||||
const streamRate = clientOptions.streamRate;
|
||||
if (!streamRate) {
|
||||
return options;
|
||||
|
|
|
|||
|
|
@ -1,170 +0,0 @@
|
|||
const { HttpsProxyAgent } = require('https-proxy-agent');
|
||||
const { KnownEndpoints } = require('librechat-data-provider');
|
||||
const { sanitizeModelName, constructAzureURL } = require('~/utils');
|
||||
const { isEnabled } = require('~/server/utils');
|
||||
|
||||
/**
|
||||
* Generates configuration options for creating a language model (LLM) instance.
|
||||
* @param {string} apiKey - The API key for authentication.
|
||||
* @param {Object} options - Additional options for configuring the LLM.
|
||||
* @param {Object} [options.modelOptions] - Model-specific options.
|
||||
* @param {string} [options.modelOptions.model] - The name of the model to use.
|
||||
* @param {string} [options.modelOptions.user] - The user ID
|
||||
* @param {number} [options.modelOptions.temperature] - Controls randomness in output generation (0-2).
|
||||
* @param {number} [options.modelOptions.top_p] - Controls diversity via nucleus sampling (0-1).
|
||||
* @param {number} [options.modelOptions.frequency_penalty] - Reduces repetition of token sequences (-2 to 2).
|
||||
* @param {number} [options.modelOptions.presence_penalty] - Encourages discussing new topics (-2 to 2).
|
||||
* @param {number} [options.modelOptions.max_tokens] - The maximum number of tokens to generate.
|
||||
* @param {string[]} [options.modelOptions.stop] - Sequences where the API will stop generating further tokens.
|
||||
* @param {string} [options.reverseProxyUrl] - URL for a reverse proxy, if used.
|
||||
* @param {boolean} [options.useOpenRouter] - Flag to use OpenRouter API.
|
||||
* @param {Object} [options.headers] - Additional headers for API requests.
|
||||
* @param {string} [options.proxy] - Proxy server URL.
|
||||
* @param {Object} [options.azure] - Azure-specific configurations.
|
||||
* @param {boolean} [options.streaming] - Whether to use streaming mode.
|
||||
* @param {Object} [options.addParams] - Additional parameters to add to the model options.
|
||||
* @param {string[]} [options.dropParams] - Parameters to remove from the model options.
|
||||
* @param {string|null} [endpoint=null] - The endpoint name
|
||||
* @returns {Object} Configuration options for creating an LLM instance.
|
||||
*/
|
||||
function getLLMConfig(apiKey, options = {}, endpoint = null) {
|
||||
let {
|
||||
modelOptions = {},
|
||||
reverseProxyUrl,
|
||||
defaultQuery,
|
||||
headers,
|
||||
proxy,
|
||||
azure,
|
||||
streaming = true,
|
||||
addParams,
|
||||
dropParams,
|
||||
} = options;
|
||||
|
||||
/** @type {OpenAIClientOptions} */
|
||||
let llmConfig = {
|
||||
streaming,
|
||||
};
|
||||
|
||||
Object.assign(llmConfig, modelOptions);
|
||||
|
||||
if (addParams && typeof addParams === 'object') {
|
||||
Object.assign(llmConfig, addParams);
|
||||
}
|
||||
/** Note: OpenAI Web Search models do not support any known parameters besdies `max_tokens` */
|
||||
if (modelOptions.model && /gpt-4o.*search/.test(modelOptions.model)) {
|
||||
const searchExcludeParams = [
|
||||
'frequency_penalty',
|
||||
'presence_penalty',
|
||||
'temperature',
|
||||
'top_p',
|
||||
'top_k',
|
||||
'stop',
|
||||
'logit_bias',
|
||||
'seed',
|
||||
'response_format',
|
||||
'n',
|
||||
'logprobs',
|
||||
'user',
|
||||
];
|
||||
|
||||
dropParams = dropParams || [];
|
||||
dropParams = [...new Set([...dropParams, ...searchExcludeParams])];
|
||||
}
|
||||
|
||||
if (dropParams && Array.isArray(dropParams)) {
|
||||
dropParams.forEach((param) => {
|
||||
if (llmConfig[param]) {
|
||||
llmConfig[param] = undefined;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
let useOpenRouter;
|
||||
/** @type {OpenAIClientOptions['configuration']} */
|
||||
const configOptions = {};
|
||||
if (
|
||||
(reverseProxyUrl && reverseProxyUrl.includes(KnownEndpoints.openrouter)) ||
|
||||
(endpoint && endpoint.toLowerCase().includes(KnownEndpoints.openrouter))
|
||||
) {
|
||||
useOpenRouter = true;
|
||||
llmConfig.include_reasoning = true;
|
||||
configOptions.baseURL = reverseProxyUrl;
|
||||
configOptions.defaultHeaders = Object.assign(
|
||||
{
|
||||
'HTTP-Referer': 'https://librechat.ai',
|
||||
'X-Title': 'LibreChat',
|
||||
},
|
||||
headers,
|
||||
);
|
||||
} else if (reverseProxyUrl) {
|
||||
configOptions.baseURL = reverseProxyUrl;
|
||||
if (headers) {
|
||||
configOptions.defaultHeaders = headers;
|
||||
}
|
||||
}
|
||||
|
||||
if (defaultQuery) {
|
||||
configOptions.defaultQuery = defaultQuery;
|
||||
}
|
||||
|
||||
if (proxy) {
|
||||
const proxyAgent = new HttpsProxyAgent(proxy);
|
||||
Object.assign(configOptions, {
|
||||
httpAgent: proxyAgent,
|
||||
httpsAgent: proxyAgent,
|
||||
});
|
||||
}
|
||||
|
||||
if (azure) {
|
||||
const useModelName = isEnabled(process.env.AZURE_USE_MODEL_AS_DEPLOYMENT_NAME);
|
||||
azure.azureOpenAIApiDeploymentName = useModelName
|
||||
? sanitizeModelName(llmConfig.model)
|
||||
: azure.azureOpenAIApiDeploymentName;
|
||||
|
||||
if (process.env.AZURE_OPENAI_DEFAULT_MODEL) {
|
||||
llmConfig.model = process.env.AZURE_OPENAI_DEFAULT_MODEL;
|
||||
}
|
||||
|
||||
if (configOptions.baseURL) {
|
||||
const azureURL = constructAzureURL({
|
||||
baseURL: configOptions.baseURL,
|
||||
azureOptions: azure,
|
||||
});
|
||||
azure.azureOpenAIBasePath = azureURL.split(`/${azure.azureOpenAIApiDeploymentName}`)[0];
|
||||
}
|
||||
|
||||
Object.assign(llmConfig, azure);
|
||||
llmConfig.model = llmConfig.azureOpenAIApiDeploymentName;
|
||||
} else {
|
||||
llmConfig.apiKey = apiKey;
|
||||
// Object.assign(llmConfig, {
|
||||
// configuration: { apiKey },
|
||||
// });
|
||||
}
|
||||
|
||||
if (process.env.OPENAI_ORGANIZATION && this.azure) {
|
||||
llmConfig.organization = process.env.OPENAI_ORGANIZATION;
|
||||
}
|
||||
|
||||
if (useOpenRouter && llmConfig.reasoning_effort != null) {
|
||||
llmConfig.reasoning = {
|
||||
effort: llmConfig.reasoning_effort,
|
||||
};
|
||||
delete llmConfig.reasoning_effort;
|
||||
}
|
||||
|
||||
if (llmConfig?.['max_tokens'] != null) {
|
||||
/** @type {number} */
|
||||
llmConfig.maxTokens = llmConfig['max_tokens'];
|
||||
delete llmConfig['max_tokens'];
|
||||
}
|
||||
|
||||
return {
|
||||
/** @type {OpenAIClientOptions} */
|
||||
llmConfig,
|
||||
/** @type {OpenAIClientOptions['configuration']} */
|
||||
configOptions,
|
||||
};
|
||||
}
|
||||
|
||||
module.exports = { getLLMConfig };
|
||||
Loading…
Add table
Add a link
Reference in a new issue