mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-17 00:40:14 +01:00
💫 feat: Config File & Custom Endpoints (#1474)
* WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
This commit is contained in:
parent
3f98f92d4c
commit
29473a72db
100 changed files with 2146 additions and 627 deletions
|
|
@ -9,75 +9,7 @@ export enum EModelEndpoint {
|
|||
gptPlugins = 'gptPlugins',
|
||||
anthropic = 'anthropic',
|
||||
assistant = 'assistant',
|
||||
}
|
||||
|
||||
export const defaultEndpoints: EModelEndpoint[] = [
|
||||
EModelEndpoint.openAI,
|
||||
EModelEndpoint.assistant,
|
||||
EModelEndpoint.azureOpenAI,
|
||||
EModelEndpoint.bingAI,
|
||||
EModelEndpoint.chatGPTBrowser,
|
||||
EModelEndpoint.gptPlugins,
|
||||
EModelEndpoint.google,
|
||||
EModelEndpoint.anthropic,
|
||||
];
|
||||
|
||||
export const defaultModels = {
|
||||
[EModelEndpoint.google]: [
|
||||
'gemini-pro',
|
||||
'gemini-pro-vision',
|
||||
'chat-bison',
|
||||
'chat-bison-32k',
|
||||
'codechat-bison',
|
||||
'codechat-bison-32k',
|
||||
'text-bison',
|
||||
'text-bison-32k',
|
||||
'text-unicorn',
|
||||
'code-gecko',
|
||||
'code-bison',
|
||||
'code-bison-32k',
|
||||
],
|
||||
[EModelEndpoint.anthropic]: [
|
||||
'claude-2.1',
|
||||
'claude-2',
|
||||
'claude-1.2',
|
||||
'claude-1',
|
||||
'claude-1-100k',
|
||||
'claude-instant-1',
|
||||
'claude-instant-1-100k',
|
||||
],
|
||||
[EModelEndpoint.openAI]: [
|
||||
'gpt-3.5-turbo-16k-0613',
|
||||
'gpt-3.5-turbo-16k',
|
||||
'gpt-4-1106-preview',
|
||||
'gpt-3.5-turbo',
|
||||
'gpt-3.5-turbo-1106',
|
||||
'gpt-4-vision-preview',
|
||||
'gpt-4',
|
||||
'gpt-3.5-turbo-instruct-0914',
|
||||
'gpt-3.5-turbo-0613',
|
||||
'gpt-3.5-turbo-0301',
|
||||
'gpt-3.5-turbo-instruct',
|
||||
'gpt-4-0613',
|
||||
'text-davinci-003',
|
||||
'gpt-4-0314',
|
||||
],
|
||||
};
|
||||
|
||||
export const alternateName = {
|
||||
[EModelEndpoint.openAI]: 'OpenAI',
|
||||
[EModelEndpoint.assistant]: 'Assistants',
|
||||
[EModelEndpoint.azureOpenAI]: 'Azure OpenAI',
|
||||
[EModelEndpoint.bingAI]: 'Bing',
|
||||
[EModelEndpoint.chatGPTBrowser]: 'ChatGPT',
|
||||
[EModelEndpoint.gptPlugins]: 'Plugins',
|
||||
[EModelEndpoint.google]: 'Google',
|
||||
[EModelEndpoint.anthropic]: 'Anthropic',
|
||||
};
|
||||
|
||||
export enum AuthKeys {
|
||||
GOOGLE_SERVICE_KEY = 'GOOGLE_SERVICE_KEY',
|
||||
GOOGLE_API_KEY = 'GOOGLE_API_KEY',
|
||||
custom = 'custom',
|
||||
}
|
||||
|
||||
export const endpointSettings = {
|
||||
|
|
@ -116,41 +48,10 @@ export const endpointSettings = {
|
|||
|
||||
const google = endpointSettings[EModelEndpoint.google];
|
||||
|
||||
export const EndpointURLs: { [key in EModelEndpoint]: string } = {
|
||||
[EModelEndpoint.azureOpenAI]: '/api/ask/azureOpenAI',
|
||||
[EModelEndpoint.openAI]: '/api/ask/openAI',
|
||||
[EModelEndpoint.bingAI]: '/api/ask/bingAI',
|
||||
[EModelEndpoint.chatGPTBrowser]: '/api/ask/chatGPTBrowser',
|
||||
[EModelEndpoint.google]: '/api/ask/google',
|
||||
[EModelEndpoint.gptPlugins]: '/api/ask/gptPlugins',
|
||||
[EModelEndpoint.anthropic]: '/api/ask/anthropic',
|
||||
[EModelEndpoint.assistant]: '/api/assistants/chat',
|
||||
};
|
||||
|
||||
export const modularEndpoints = new Set<EModelEndpoint | string>([
|
||||
EModelEndpoint.gptPlugins,
|
||||
EModelEndpoint.anthropic,
|
||||
EModelEndpoint.google,
|
||||
EModelEndpoint.openAI,
|
||||
]);
|
||||
|
||||
export const supportsFiles = {
|
||||
[EModelEndpoint.openAI]: true,
|
||||
[EModelEndpoint.google]: true,
|
||||
[EModelEndpoint.assistant]: true,
|
||||
[EModelEndpoint.azureOpenAI]: true,
|
||||
};
|
||||
|
||||
export const supportsBalanceCheck = {
|
||||
[EModelEndpoint.openAI]: true,
|
||||
[EModelEndpoint.azureOpenAI]: true,
|
||||
[EModelEndpoint.gptPlugins]: true,
|
||||
};
|
||||
|
||||
export const visionModels = ['gpt-4-vision', 'llava-13b', 'gemini-pro-vision'];
|
||||
|
||||
export const eModelEndpointSchema = z.nativeEnum(EModelEndpoint);
|
||||
|
||||
export const extendedModelEndpointSchema = z.union([eModelEndpointSchema, z.string()]);
|
||||
|
||||
export const tPluginAuthConfigSchema = z.object({
|
||||
authField: z.string(),
|
||||
label: z.string(),
|
||||
|
|
@ -253,6 +154,7 @@ export const tConversationSchema = z.object({
|
|||
title: z.string().nullable().or(z.literal('New Chat')).default('New Chat'),
|
||||
user: z.string().optional(),
|
||||
endpoint: eModelEndpointSchema.nullable(),
|
||||
endpointType: eModelEndpointSchema.optional(),
|
||||
suggestions: z.array(z.string()).optional(),
|
||||
messages: z.array(z.string()).optional(),
|
||||
tools: z.array(tPluginSchema).optional(),
|
||||
|
|
@ -305,8 +207,22 @@ export const tPresetSchema = tConversationSchema
|
|||
}),
|
||||
);
|
||||
|
||||
export const tConvoUpdateSchema = tConversationSchema.merge(
|
||||
z.object({
|
||||
endpoint: extendedModelEndpointSchema.nullable(),
|
||||
}),
|
||||
);
|
||||
|
||||
export const tPresetUpdateSchema = tConversationSchema.merge(
|
||||
z.object({
|
||||
endpoint: extendedModelEndpointSchema.nullable(),
|
||||
}),
|
||||
);
|
||||
|
||||
export type TPreset = z.infer<typeof tPresetSchema>;
|
||||
|
||||
// type DefaultSchemaValues = Partial<typeof google>;
|
||||
|
||||
export const openAISchema = tConversationSchema
|
||||
.pick({
|
||||
model: true,
|
||||
|
|
@ -528,122 +444,6 @@ export const assistantSchema = tConversationSchema
|
|||
.transform(removeNullishValues)
|
||||
.catch(() => ({}));
|
||||
|
||||
type EndpointSchema =
|
||||
| typeof openAISchema
|
||||
| typeof googleSchema
|
||||
| typeof bingAISchema
|
||||
| typeof anthropicSchema
|
||||
| typeof chatGPTBrowserSchema
|
||||
| typeof gptPluginsSchema
|
||||
| typeof assistantSchema;
|
||||
|
||||
const endpointSchemas: Record<EModelEndpoint, EndpointSchema> = {
|
||||
[EModelEndpoint.openAI]: openAISchema,
|
||||
[EModelEndpoint.azureOpenAI]: openAISchema,
|
||||
[EModelEndpoint.google]: googleSchema,
|
||||
[EModelEndpoint.bingAI]: bingAISchema,
|
||||
[EModelEndpoint.anthropic]: anthropicSchema,
|
||||
[EModelEndpoint.chatGPTBrowser]: chatGPTBrowserSchema,
|
||||
[EModelEndpoint.gptPlugins]: gptPluginsSchema,
|
||||
[EModelEndpoint.assistant]: assistantSchema,
|
||||
};
|
||||
|
||||
export function getFirstDefinedValue(possibleValues: string[]) {
|
||||
let returnValue;
|
||||
for (const value of possibleValues) {
|
||||
if (value) {
|
||||
returnValue = value;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return returnValue;
|
||||
}
|
||||
|
||||
export type TPossibleValues = {
|
||||
models: string[];
|
||||
secondaryModels?: string[];
|
||||
};
|
||||
|
||||
export const parseConvo = (
|
||||
endpoint: EModelEndpoint,
|
||||
conversation: Partial<TConversation | TPreset>,
|
||||
possibleValues?: TPossibleValues,
|
||||
) => {
|
||||
const schema = endpointSchemas[endpoint];
|
||||
|
||||
if (!schema) {
|
||||
throw new Error(`Unknown endpoint: ${endpoint}`);
|
||||
}
|
||||
|
||||
const convo = schema.parse(conversation) as TConversation;
|
||||
const { models, secondaryModels } = possibleValues ?? {};
|
||||
|
||||
if (models && convo) {
|
||||
convo.model = getFirstDefinedValue(models) ?? convo.model;
|
||||
}
|
||||
|
||||
if (secondaryModels && convo.agentOptions) {
|
||||
convo.agentOptions.model = getFirstDefinedValue(secondaryModels) ?? convo.agentOptions.model;
|
||||
}
|
||||
|
||||
return convo;
|
||||
};
|
||||
|
||||
export type TEndpointOption = {
|
||||
endpoint: EModelEndpoint;
|
||||
model?: string | null;
|
||||
promptPrefix?: string;
|
||||
temperature?: number;
|
||||
chatGptLabel?: string | null;
|
||||
modelLabel?: string | null;
|
||||
jailbreak?: boolean;
|
||||
key?: string | null;
|
||||
};
|
||||
|
||||
export const getResponseSender = (endpointOption: TEndpointOption): string => {
|
||||
const { model, endpoint, chatGptLabel, modelLabel, jailbreak } = endpointOption;
|
||||
|
||||
if (
|
||||
[
|
||||
EModelEndpoint.openAI,
|
||||
EModelEndpoint.azureOpenAI,
|
||||
EModelEndpoint.gptPlugins,
|
||||
EModelEndpoint.chatGPTBrowser,
|
||||
].includes(endpoint)
|
||||
) {
|
||||
if (chatGptLabel) {
|
||||
return chatGptLabel;
|
||||
} else if (model && model.includes('gpt-3')) {
|
||||
return 'GPT-3.5';
|
||||
} else if (model && model.includes('gpt-4')) {
|
||||
return 'GPT-4';
|
||||
}
|
||||
return alternateName[endpoint] ?? 'ChatGPT';
|
||||
}
|
||||
|
||||
if (endpoint === EModelEndpoint.bingAI) {
|
||||
return jailbreak ? 'Sydney' : 'BingAI';
|
||||
}
|
||||
|
||||
if (endpoint === EModelEndpoint.anthropic) {
|
||||
return modelLabel ?? 'Claude';
|
||||
}
|
||||
|
||||
if (endpoint === EModelEndpoint.google) {
|
||||
if (modelLabel) {
|
||||
return modelLabel;
|
||||
} else if (model && model.includes('gemini')) {
|
||||
return 'Gemini';
|
||||
} else if (model && model.includes('code')) {
|
||||
return 'Codey';
|
||||
}
|
||||
|
||||
return 'PaLM2';
|
||||
}
|
||||
|
||||
return '';
|
||||
};
|
||||
|
||||
export const compactOpenAISchema = tConversationSchema
|
||||
.pick({
|
||||
model: true,
|
||||
|
|
@ -809,53 +609,52 @@ export const compactPluginsSchema = tConversationSchema
|
|||
})
|
||||
.catch(() => ({}));
|
||||
|
||||
type CompactEndpointSchema =
|
||||
| typeof compactOpenAISchema
|
||||
| typeof assistantSchema
|
||||
| typeof compactGoogleSchema
|
||||
| typeof bingAISchema
|
||||
| typeof compactAnthropicSchema
|
||||
| typeof compactChatGPTSchema
|
||||
| typeof compactPluginsSchema;
|
||||
// const createGoogleSchema = (customGoogle: DefaultSchemaValues) => {
|
||||
// const defaults = { ...google, ...customGoogle };
|
||||
// return tConversationSchema
|
||||
// .pick({
|
||||
// model: true,
|
||||
// modelLabel: true,
|
||||
// promptPrefix: true,
|
||||
// examples: true,
|
||||
// temperature: true,
|
||||
// maxOutputTokens: true,
|
||||
// topP: true,
|
||||
// topK: true,
|
||||
// })
|
||||
// .transform((obj) => {
|
||||
// const isGeminiPro = obj?.model?.toLowerCase()?.includes('gemini-pro');
|
||||
|
||||
const compactEndpointSchemas: Record<string, CompactEndpointSchema> = {
|
||||
openAI: compactOpenAISchema,
|
||||
azureOpenAI: compactOpenAISchema,
|
||||
assistant: assistantSchema,
|
||||
google: compactGoogleSchema,
|
||||
/* BingAI needs all fields */
|
||||
bingAI: bingAISchema,
|
||||
anthropic: compactAnthropicSchema,
|
||||
chatGPTBrowser: compactChatGPTSchema,
|
||||
gptPlugins: compactPluginsSchema,
|
||||
};
|
||||
// const maxOutputTokensMax = isGeminiPro
|
||||
// ? defaults.maxOutputTokens.maxGeminiPro
|
||||
// : defaults.maxOutputTokens.max;
|
||||
// const maxOutputTokensDefault = isGeminiPro
|
||||
// ? defaults.maxOutputTokens.defaultGeminiPro
|
||||
// : defaults.maxOutputTokens.default;
|
||||
|
||||
export const parseCompactConvo = (
|
||||
endpoint: EModelEndpoint | undefined,
|
||||
conversation: Partial<TConversation | TPreset>,
|
||||
possibleValues?: TPossibleValues,
|
||||
) => {
|
||||
if (!endpoint) {
|
||||
throw new Error(`undefined endpoint: ${endpoint}`);
|
||||
}
|
||||
// let maxOutputTokens = obj.maxOutputTokens ?? maxOutputTokensDefault;
|
||||
// maxOutputTokens = Math.min(maxOutputTokens, maxOutputTokensMax);
|
||||
|
||||
const schema = compactEndpointSchemas[endpoint];
|
||||
|
||||
if (!schema) {
|
||||
throw new Error(`Unknown endpoint: ${endpoint}`);
|
||||
}
|
||||
|
||||
const convo = schema.parse(conversation) as TConversation;
|
||||
// const { models, secondaryModels } = possibleValues ?? {};
|
||||
const { models } = possibleValues ?? {};
|
||||
|
||||
if (models && convo) {
|
||||
convo.model = getFirstDefinedValue(models) ?? convo.model;
|
||||
}
|
||||
|
||||
// if (secondaryModels && convo.agentOptions) {
|
||||
// convo.agentOptionmodel = getFirstDefinedValue(secondaryModels) ?? convo.agentOptionmodel;
|
||||
// }
|
||||
|
||||
return convo;
|
||||
};
|
||||
// return {
|
||||
// ...obj,
|
||||
// model: obj.model ?? defaults.model.default,
|
||||
// modelLabel: obj.modelLabel ?? null,
|
||||
// promptPrefix: obj.promptPrefix ?? null,
|
||||
// examples: obj.examples ?? [{ input: { content: '' }, output: { content: '' } }],
|
||||
// temperature: obj.temperature ?? defaults.temperature.default,
|
||||
// maxOutputTokens,
|
||||
// topP: obj.topP ?? defaults.topP.default,
|
||||
// topK: obj.topK ?? defaults.topK.default,
|
||||
// };
|
||||
// })
|
||||
// .catch(() => ({
|
||||
// model: defaults.model.default,
|
||||
// modelLabel: null,
|
||||
// promptPrefix: null,
|
||||
// examples: [{ input: { content: '' }, output: { content: '' } }],
|
||||
// temperature: defaults.temperature.default,
|
||||
// maxOutputTokens: defaults.maxOutputTokens.default,
|
||||
// topP: defaults.topP.default,
|
||||
// topK: defaults.topK.default,
|
||||
// }));
|
||||
// };
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue