💫 feat: Config File & Custom Endpoints (#1474)

* WIP(backend/api): custom endpoint

* WIP(frontend/client): custom endpoint

* chore: adjust typedefs for configs

* refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility

* feat: loadYaml utility

* refactor: rename back to  from  and proof-of-concept for creating schemas from user-defined defaults

* refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config

* refactor(EndpointController): rename variables for clarity

* feat: initial load custom config

* feat(server/utils): add simple `isUserProvided` helper

* chore(types): update TConfig type

* refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models

* feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels

* chore: reorganize server init imports, invoke loadCustomConfig

* refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint

* refactor(Endpoint/ModelController): spread config values after default (temporary)

* chore(client): fix type issues

* WIP: first pass for multiple custom endpoints
- add endpointType to Conversation schema
- add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion)
- use `endpointType` value as `endpoint` where mapping to type is necessary using this field
- use custom defined `endpoint` value and not type for mapping to modelsConfig
- misc: add return type to `getDefaultEndpoint`
- in `useNewConvo`, add the endpointType if it wasn't already added to conversation
- EndpointsMenu: use user-defined endpoint name as Title in menu
- TODO: custom icon via custom config, change unknown to robot icon

* refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code

* chore: remove unused availableModels field in TConfig type

* refactor(parseCompactConvo): pass args as an object and change where used accordingly

* feat: chat through custom endpoint

* chore(message/convoSchemas): avoid saving empty arrays

* fix(BaseClient/saveMessageToDatabase): save endpointType

* refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve

* fix(useConversation): assign endpointType if it's missing

* fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset)

* chore: recorganize types order for TConfig, add `iconURL`

* feat: custom endpoint icon support:
- use UnknownIcon in all icon contexts
- add mistral and openrouter as known endpoints, and add their icons
- iconURL support

* fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults

* refactor(Settings/OpenAI): remove legacy `isOpenAI` flag

* fix(OpenAIClient): do not invoke abortCompletion on completion error

* feat: add responseSender/label support for custom endpoints:
- use defaultModelLabel field in endpointOption
- add model defaults for custom endpoints in `getResponseSender`
- add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel`
- include defaultModelLabel from endpointConfig in custom endpoint client options
- pass `endpointType` to `getResponseSender`

* feat(OpenAIClient): use custom options from config file

* refactor: rename `defaultModelLabel` to `modelDisplayLabel`

* refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere

* feat: `iconURL` and extract environment variables from custom endpoint config values

* feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml`

* docs: custom config docs and examples

* fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions

* fix(custom/initializeClient): extract env var and use `isUserProvided` function

* Update librechat.example.yaml

* feat(InputWithLabel): add className props, and forwardRef

* fix(streamResponse): handle error edge case where either messages or convos query throws an error

* fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error

* feat: user_provided keys for custom endpoints

* fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name`

* feat(loadConfigModels): extract env variables and optimize fetching models

* feat: support custom endpoint iconURL for messages and Nav

* feat(OpenAIClient): add/dropParams support

* docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY`

* docs: update docs with additional notes

* feat(maxTokensMap): add mistral models (32k context)

* docs: update openrouter notes

* Update ai_setup.md

* docs(custom_config): add table of contents and fix note about custom name

* docs(custom_config): reorder ToC

* Update custom_config.md

* Add note about `max_tokens` field in custom_config.md
This commit is contained in:
Danny Avila 2024-01-03 09:22:48 -05:00 committed by GitHub
parent 3f98f92d4c
commit 29473a72db
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
100 changed files with 2146 additions and 627 deletions

View file

@ -0,0 +1,225 @@
import type { TConversation, TPreset } from './schemas';
import type { TEndpointOption } from './types';
import {
EModelEndpoint,
openAISchema,
googleSchema,
bingAISchema,
anthropicSchema,
chatGPTBrowserSchema,
gptPluginsSchema,
assistantSchema,
compactOpenAISchema,
compactGoogleSchema,
compactAnthropicSchema,
compactChatGPTSchema,
compactPluginsSchema,
} from './schemas';
import { alternateName } from './config';
type EndpointSchema =
| typeof openAISchema
| typeof googleSchema
| typeof bingAISchema
| typeof anthropicSchema
| typeof chatGPTBrowserSchema
| typeof gptPluginsSchema
| typeof assistantSchema;
const endpointSchemas: Record<EModelEndpoint, EndpointSchema> = {
[EModelEndpoint.openAI]: openAISchema,
[EModelEndpoint.azureOpenAI]: openAISchema,
[EModelEndpoint.custom]: openAISchema,
[EModelEndpoint.google]: googleSchema,
[EModelEndpoint.bingAI]: bingAISchema,
[EModelEndpoint.anthropic]: anthropicSchema,
[EModelEndpoint.chatGPTBrowser]: chatGPTBrowserSchema,
[EModelEndpoint.gptPlugins]: gptPluginsSchema,
[EModelEndpoint.assistant]: assistantSchema,
};
// const schemaCreators: Record<EModelEndpoint, (customSchema: DefaultSchemaValues) => EndpointSchema> = {
// [EModelEndpoint.google]: createGoogleSchema,
// };
export function getFirstDefinedValue(possibleValues: string[]) {
let returnValue;
for (const value of possibleValues) {
if (value) {
returnValue = value;
break;
}
}
return returnValue;
}
export type TPossibleValues = {
models: string[];
secondaryModels?: string[];
};
export const parseConvo = ({
endpoint,
endpointType,
conversation,
possibleValues,
}: {
endpoint: EModelEndpoint;
endpointType?: EModelEndpoint;
conversation: Partial<TConversation | TPreset>;
possibleValues?: TPossibleValues;
// TODO: POC for default schema
// defaultSchema?: Partial<EndpointSchema>,
}) => {
let schema = endpointSchemas[endpoint];
if (!schema && !endpointType) {
throw new Error(`Unknown endpoint: ${endpoint}`);
} else if (!schema && endpointType) {
schema = endpointSchemas[endpointType];
}
// if (defaultSchema && schemaCreators[endpoint]) {
// schema = schemaCreators[endpoint](defaultSchema);
// }
const convo = schema.parse(conversation) as TConversation;
const { models, secondaryModels } = possibleValues ?? {};
if (models && convo) {
convo.model = getFirstDefinedValue(models) ?? convo.model;
}
if (secondaryModels && convo.agentOptions) {
convo.agentOptions.model = getFirstDefinedValue(secondaryModels) ?? convo.agentOptions.model;
}
return convo;
};
export const getResponseSender = (endpointOption: TEndpointOption): string => {
const { model, endpoint, endpointType, modelDisplayLabel, chatGptLabel, modelLabel, jailbreak } =
endpointOption;
if (
[
EModelEndpoint.openAI,
EModelEndpoint.azureOpenAI,
EModelEndpoint.gptPlugins,
EModelEndpoint.chatGPTBrowser,
].includes(endpoint)
) {
if (chatGptLabel) {
return chatGptLabel;
} else if (model && model.includes('gpt-3')) {
return 'GPT-3.5';
} else if (model && model.includes('gpt-4')) {
return 'GPT-4';
} else if (model && model.includes('mistral')) {
return 'Mistral';
}
return alternateName[endpoint] ?? 'ChatGPT';
}
if (endpoint === EModelEndpoint.bingAI) {
return jailbreak ? 'Sydney' : 'BingAI';
}
if (endpoint === EModelEndpoint.anthropic) {
return modelLabel ?? 'Claude';
}
if (endpoint === EModelEndpoint.google) {
if (modelLabel) {
return modelLabel;
} else if (model && model.includes('gemini')) {
return 'Gemini';
} else if (model && model.includes('code')) {
return 'Codey';
}
return 'PaLM2';
}
if (endpoint === EModelEndpoint.custom || endpointType === EModelEndpoint.custom) {
if (modelLabel) {
return modelLabel;
} else if (chatGptLabel) {
return chatGptLabel;
} else if (model && model.includes('mistral')) {
return 'Mistral';
} else if (model && model.includes('gpt-3')) {
return 'GPT-3.5';
} else if (model && model.includes('gpt-4')) {
return 'GPT-4';
} else if (modelDisplayLabel) {
return modelDisplayLabel;
}
return 'AI';
}
return '';
};
type CompactEndpointSchema =
| typeof compactOpenAISchema
| typeof assistantSchema
| typeof compactGoogleSchema
| typeof bingAISchema
| typeof compactAnthropicSchema
| typeof compactChatGPTSchema
| typeof compactPluginsSchema;
const compactEndpointSchemas: Record<string, CompactEndpointSchema> = {
openAI: compactOpenAISchema,
azureOpenAI: compactOpenAISchema,
custom: compactOpenAISchema,
assistant: assistantSchema,
google: compactGoogleSchema,
/* BingAI needs all fields */
bingAI: bingAISchema,
anthropic: compactAnthropicSchema,
chatGPTBrowser: compactChatGPTSchema,
gptPlugins: compactPluginsSchema,
};
export const parseCompactConvo = ({
endpoint,
endpointType,
conversation,
possibleValues,
}: {
endpoint?: EModelEndpoint;
endpointType?: EModelEndpoint;
conversation: Partial<TConversation | TPreset>;
possibleValues?: TPossibleValues;
// TODO: POC for default schema
// defaultSchema?: Partial<EndpointSchema>,
}) => {
if (!endpoint) {
throw new Error(`undefined endpoint: ${endpoint}`);
}
let schema = compactEndpointSchemas[endpoint];
if (!schema && !endpointType) {
throw new Error(`Unknown endpoint: ${endpoint}`);
} else if (!schema && endpointType) {
schema = compactEndpointSchemas[endpointType];
}
const convo = schema.parse(conversation) as TConversation;
// const { models, secondaryModels } = possibleValues ?? {};
const { models } = possibleValues ?? {};
if (models && convo) {
convo.model = getFirstDefinedValue(models) ?? convo.model;
}
// if (secondaryModels && convo.agentOptions) {
// convo.agentOptionmodel = getFirstDefinedValue(secondaryModels) ?? convo.agentOptionmodel;
// }
return convo;
};