💫 feat: Config File & Custom Endpoints (#1474)

* WIP(backend/api): custom endpoint

* WIP(frontend/client): custom endpoint

* chore: adjust typedefs for configs

* refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility

* feat: loadYaml utility

* refactor: rename back to  from  and proof-of-concept for creating schemas from user-defined defaults

* refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config

* refactor(EndpointController): rename variables for clarity

* feat: initial load custom config

* feat(server/utils): add simple `isUserProvided` helper

* chore(types): update TConfig type

* refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models

* feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels

* chore: reorganize server init imports, invoke loadCustomConfig

* refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint

* refactor(Endpoint/ModelController): spread config values after default (temporary)

* chore(client): fix type issues

* WIP: first pass for multiple custom endpoints
- add endpointType to Conversation schema
- add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion)
- use `endpointType` value as `endpoint` where mapping to type is necessary using this field
- use custom defined `endpoint` value and not type for mapping to modelsConfig
- misc: add return type to `getDefaultEndpoint`
- in `useNewConvo`, add the endpointType if it wasn't already added to conversation
- EndpointsMenu: use user-defined endpoint name as Title in menu
- TODO: custom icon via custom config, change unknown to robot icon

* refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code

* chore: remove unused availableModels field in TConfig type

* refactor(parseCompactConvo): pass args as an object and change where used accordingly

* feat: chat through custom endpoint

* chore(message/convoSchemas): avoid saving empty arrays

* fix(BaseClient/saveMessageToDatabase): save endpointType

* refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve

* fix(useConversation): assign endpointType if it's missing

* fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset)

* chore: recorganize types order for TConfig, add `iconURL`

* feat: custom endpoint icon support:
- use UnknownIcon in all icon contexts
- add mistral and openrouter as known endpoints, and add their icons
- iconURL support

* fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults

* refactor(Settings/OpenAI): remove legacy `isOpenAI` flag

* fix(OpenAIClient): do not invoke abortCompletion on completion error

* feat: add responseSender/label support for custom endpoints:
- use defaultModelLabel field in endpointOption
- add model defaults for custom endpoints in `getResponseSender`
- add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel`
- include defaultModelLabel from endpointConfig in custom endpoint client options
- pass `endpointType` to `getResponseSender`

* feat(OpenAIClient): use custom options from config file

* refactor: rename `defaultModelLabel` to `modelDisplayLabel`

* refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere

* feat: `iconURL` and extract environment variables from custom endpoint config values

* feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml`

* docs: custom config docs and examples

* fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions

* fix(custom/initializeClient): extract env var and use `isUserProvided` function

* Update librechat.example.yaml

* feat(InputWithLabel): add className props, and forwardRef

* fix(streamResponse): handle error edge case where either messages or convos query throws an error

* fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error

* feat: user_provided keys for custom endpoints

* fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name`

* feat(loadConfigModels): extract env variables and optimize fetching models

* feat: support custom endpoint iconURL for messages and Nav

* feat(OpenAIClient): add/dropParams support

* docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY`

* docs: update docs with additional notes

* feat(maxTokensMap): add mistral models (32k context)

* docs: update openrouter notes

* Update ai_setup.md

* docs(custom_config): add table of contents and fix note about custom name

* docs(custom_config): reorder ToC

* Update custom_config.md

* Add note about `max_tokens` field in custom_config.md
This commit is contained in:
Danny Avila 2024-01-03 09:22:48 -05:00 committed by GitHub
parent 3f98f92d4c
commit 29473a72db
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
100 changed files with 2146 additions and 627 deletions

View file

@ -24,15 +24,53 @@ const {
PROXY,
} = process.env ?? {};
/**
* Fetches OpenAI models from the specified base API path or Azure, based on the provided configuration.
*
* @param {Object} params - The parameters for fetching the models.
* @param {string} params.apiKey - The API key for authentication with the API.
* @param {string} params.baseURL - The base path URL for the API.
* @param {string} [params.name='OpenAI'] - The name of the API; defaults to 'OpenAI'.
* @param {boolean} [params.azure=false] - Whether to fetch models from Azure.
* @returns {Promise<string[]>} A promise that resolves to an array of model identifiers.
* @async
*/
const fetchModels = async ({ apiKey, baseURL, name = 'OpenAI', azure = false }) => {
let models = [];
if (!baseURL && !azure) {
return models;
}
try {
const payload = {
headers: {
Authorization: `Bearer ${apiKey}`,
},
};
if (PROXY) {
payload.httpsAgent = new HttpsProxyAgent(PROXY);
}
const res = await axios.get(`${baseURL}${azure ? '' : '/models'}`, payload);
models = res.data.data.map((item) => item.id);
} catch (err) {
logger.error(`Failed to fetch models from ${azure ? 'Azure ' : ''}${name} API`, err);
}
return models;
};
const fetchOpenAIModels = async (opts = { azure: false, plugins: false }, _models = []) => {
let models = _models.slice() ?? [];
let apiKey = openAIApiKey;
let basePath = 'https://api.openai.com/v1';
let baseURL = 'https://api.openai.com/v1';
let reverseProxyUrl = OPENAI_REVERSE_PROXY;
if (opts.azure) {
return models;
// const azure = getAzureCredentials();
// basePath = (genAzureChatCompletion(azure))
// baseURL = (genAzureChatCompletion(azure))
// .split('/deployments')[0]
// .concat(`/models?api-version=${azure.azureOpenAIApiVersion}`);
// apiKey = azureOpenAIApiKey;
@ -42,32 +80,20 @@ const fetchOpenAIModels = async (opts = { azure: false, plugins: false }, _model
}
if (reverseProxyUrl) {
basePath = extractBaseURL(reverseProxyUrl);
baseURL = extractBaseURL(reverseProxyUrl);
}
const cachedModels = await modelsCache.get(basePath);
const cachedModels = await modelsCache.get(baseURL);
if (cachedModels) {
return cachedModels;
}
if (basePath || opts.azure) {
try {
const payload = {
headers: {
Authorization: `Bearer ${apiKey}`,
},
};
if (PROXY) {
payload.httpsAgent = new HttpsProxyAgent(PROXY);
}
const res = await axios.get(`${basePath}${opts.azure ? '' : '/models'}`, payload);
models = res.data.data.map((item) => item.id);
// logger.debug(`Fetched ${models.length} models from ${opts.azure ? 'Azure ' : ''}OpenAI API`);
} catch (err) {
logger.error(`Failed to fetch models from ${opts.azure ? 'Azure ' : ''}OpenAI API`, err);
}
if (baseURL || opts.azure) {
models = await fetchModels({
apiKey,
baseURL,
azure: opts.azure,
});
}
if (!reverseProxyUrl) {
@ -75,7 +101,7 @@ const fetchOpenAIModels = async (opts = { azure: false, plugins: false }, _model
models = models.filter((model) => regex.test(model));
}
await modelsCache.set(basePath, models);
await modelsCache.set(baseURL, models);
return models;
};
@ -142,6 +168,7 @@ const getGoogleModels = () => {
};
module.exports = {
fetchModels,
getOpenAIModels,
getChatGPTBrowserModels,
getAnthropicModels,