🧵 refactor: Migrate Endpoint Initialization to TypeScript (#10794)

* refactor: move endpoint initialization methods to typescript

* refactor: move agent init to packages/api

- Introduced `initialize.ts` for agent initialization, including file processing and tool loading.
- Updated `resources.ts` to allow optional appConfig parameter.
- Enhanced endpoint configuration handling in various initialization files to support model parameters.
- Added new artifacts and prompts for React component generation.
- Refactored existing code to improve type safety and maintainability.

* refactor: streamline endpoint initialization and enhance type safety

- Updated initialization functions across various endpoints to use a consistent request structure, replacing `unknown` types with `ServerResponse`.
- Simplified request handling by directly extracting keys from the request body.
- Improved type safety by ensuring user IDs are safely accessed with optional chaining.
- Removed unnecessary parameters and streamlined model options handling for better clarity and maintainability.

* refactor: moved ModelService and extractBaseURL to packages/api

- Added comprehensive tests for the models fetching functionality, covering scenarios for OpenAI, Anthropic, Google, and Ollama models.
- Updated existing endpoint index to include the new models module.
- Enhanced utility functions for URL extraction and model data processing.
- Improved type safety and error handling across the models fetching logic.

* refactor: consolidate utility functions and remove unused files

- Merged `deriveBaseURL` and `extractBaseURL` into the `@librechat/api` module for better organization.
- Removed redundant utility files and their associated tests to streamline the codebase.
- Updated imports across various client files to utilize the new consolidated functions.
- Enhanced overall maintainability by reducing the number of utility modules.

* refactor: replace ModelService references with direct imports from @librechat/api and remove ModelService file

* refactor: move encrypt/decrypt methods and key db methods to data-schemas, use `getProviderConfig` from `@librechat/api`

* chore: remove unused 'res' from options in AgentClient

* refactor: file model imports and methods

- Updated imports in various controllers and services to use the unified file model from '~/models' instead of '~/models/File'.
- Consolidated file-related methods into a new file methods module in the data-schemas package.
- Added comprehensive tests for file methods including creation, retrieval, updating, and deletion.
- Enhanced the initializeAgent function to accept dependency injection for file-related methods.
- Improved error handling and logging in file methods.

* refactor: streamline database method references in agent initialization

* refactor: enhance file method tests and update type references to IMongoFile

* refactor: consolidate database method imports in agent client and initialization

* chore: remove redundant import of initializeAgent from @librechat/api

* refactor: move checkUserKeyExpiry utility to @librechat/api and update references across endpoints

* refactor: move updateUserPlugins logic to user.ts and simplify UserController

* refactor: update imports for user key management and remove UserService

* refactor: remove unused Anthropics and Bedrock endpoint files and clean up imports

* refactor: consolidate and update encryption imports across various files to use @librechat/data-schemas

* chore: update file model mock to use unified import from '~/models'

* chore: import order

* refactor: remove migrated to TS agent.js file and its associated logic from the endpoints

* chore: add reusable function to extract imports from source code in unused-packages workflow

* chore: enhance unused-packages workflow to include @librechat/api dependencies and improve dependency extraction

* chore: improve dependency extraction in unused-packages workflow with enhanced error handling and debugging output

* chore: add detailed debugging output to unused-packages workflow for better visibility into unused dependencies and exclusion lists

* chore: refine subpath handling in unused-packages workflow to correctly process scoped and non-scoped package imports

* chore: clean up unused debug output in unused-packages workflow and reorganize type imports in initialize.ts
This commit is contained in:
Danny Avila 2025-12-03 17:21:41 -05:00
parent 1a11b64266
commit 04a4a2aa44
No known key found for this signature in database
GPG key ID: BF31EEB2C5CA0956
103 changed files with 4135 additions and 2647 deletions

View file

@ -1,2 +1,3 @@
export * from './helpers';
export * from './llm';
export * from './initialize';

View file

@ -0,0 +1,73 @@
import { EModelEndpoint } from 'librechat-data-provider';
import type { BaseInitializeParams, InitializeResultBase, AnthropicConfigOptions } from '~/types';
import { checkUserKeyExpiry } from '~/utils';
import { getLLMConfig } from './llm';
/**
* Initializes Anthropic endpoint configuration.
*
* @param params - Configuration parameters
* @returns Promise resolving to Anthropic configuration options
* @throws Error if API key is not provided
*/
export async function initializeAnthropic({
req,
endpoint,
model_parameters,
db,
}: BaseInitializeParams): Promise<InitializeResultBase> {
void endpoint;
const appConfig = req.config;
const { ANTHROPIC_API_KEY, ANTHROPIC_REVERSE_PROXY, PROXY } = process.env;
const { key: expiresAt } = req.body;
const isUserProvided = ANTHROPIC_API_KEY === 'user_provided';
const anthropicApiKey = isUserProvided
? await db.getUserKey({ userId: req.user?.id ?? '', name: EModelEndpoint.anthropic })
: ANTHROPIC_API_KEY;
if (!anthropicApiKey) {
throw new Error('Anthropic API key not provided. Please provide it again.');
}
if (expiresAt && isUserProvided) {
checkUserKeyExpiry(expiresAt, EModelEndpoint.anthropic);
}
let clientOptions: AnthropicConfigOptions = {};
/** @type {undefined | TBaseEndpoint} */
const anthropicConfig = appConfig?.endpoints?.[EModelEndpoint.anthropic];
if (anthropicConfig) {
clientOptions = {
...clientOptions,
// Note: _lc_stream_delay is set on modelOptions in the result
};
}
const allConfig = appConfig?.endpoints?.all;
clientOptions = {
proxy: PROXY ?? undefined,
reverseProxyUrl: ANTHROPIC_REVERSE_PROXY ?? undefined,
modelOptions: {
...(model_parameters ?? {}),
user: req.user?.id,
},
...clientOptions,
};
const result = getLLMConfig(anthropicApiKey, clientOptions);
// Apply stream rate delay
if (anthropicConfig?.streamRate) {
(result.llmConfig as Record<string, unknown>)._lc_stream_delay = anthropicConfig.streamRate;
}
if (allConfig?.streamRate) {
(result.llmConfig as Record<string, unknown>)._lc_stream_delay = allConfig.streamRate;
}
return result;
}

View file

@ -0,0 +1 @@
export * from './initialize';

View file

@ -0,0 +1,148 @@
import { HttpsProxyAgent } from 'https-proxy-agent';
import { NodeHttpHandler } from '@smithy/node-http-handler';
import { BedrockRuntimeClient } from '@aws-sdk/client-bedrock-runtime';
import {
AuthType,
EModelEndpoint,
bedrockInputParser,
bedrockOutputParser,
removeNullishValues,
} from 'librechat-data-provider';
import type { BaseInitializeParams, InitializeResultBase, BedrockCredentials } from '~/types';
import { checkUserKeyExpiry } from '~/utils';
/**
* Initializes Bedrock endpoint configuration.
*
* This module handles configuration for AWS Bedrock endpoints, including support for
* HTTP/HTTPS proxies and reverse proxies.
*
* Proxy Support:
* - When the PROXY environment variable is set, creates a custom BedrockRuntimeClient
* with an HttpsProxyAgent to route all Bedrock API calls through the specified proxy
* - The custom client is fully configured with credentials, region, and endpoint,
* and is passed directly to ChatBedrockConverse via the 'client' parameter
*
* Reverse Proxy Support:
* - When BEDROCK_REVERSE_PROXY is set, routes Bedrock API calls through a custom endpoint
* - Works with or without the PROXY setting
*
* Without Proxy:
* - Credentials and endpoint configuration are passed separately to ChatBedrockConverse,
* which creates its own BedrockRuntimeClient internally
*
* @param params - Configuration parameters
* @returns Promise resolving to Bedrock configuration options
* @throws Error if credentials are not provided when required
*/
export async function initializeBedrock({
req,
endpoint,
model_parameters,
db,
}: BaseInitializeParams): Promise<InitializeResultBase> {
void endpoint;
const {
BEDROCK_AWS_SECRET_ACCESS_KEY,
BEDROCK_AWS_ACCESS_KEY_ID,
BEDROCK_AWS_SESSION_TOKEN,
BEDROCK_REVERSE_PROXY,
BEDROCK_AWS_DEFAULT_REGION,
PROXY,
} = process.env;
const { key: expiresAt } = req.body;
const isUserProvided = BEDROCK_AWS_SECRET_ACCESS_KEY === AuthType.USER_PROVIDED;
let credentials: BedrockCredentials | undefined = isUserProvided
? await db
.getUserKey({ userId: req.user?.id ?? '', name: EModelEndpoint.bedrock })
.then((key) => JSON.parse(key) as BedrockCredentials)
: {
accessKeyId: BEDROCK_AWS_ACCESS_KEY_ID,
secretAccessKey: BEDROCK_AWS_SECRET_ACCESS_KEY,
...(BEDROCK_AWS_SESSION_TOKEN && { sessionToken: BEDROCK_AWS_SESSION_TOKEN }),
};
if (!credentials) {
throw new Error('Bedrock credentials not provided. Please provide them again.');
}
if (
!isUserProvided &&
(credentials.accessKeyId === undefined || credentials.accessKeyId === '') &&
(credentials.secretAccessKey === undefined || credentials.secretAccessKey === '')
) {
credentials = undefined;
}
if (expiresAt && isUserProvided) {
checkUserKeyExpiry(expiresAt, EModelEndpoint.bedrock);
}
const requestOptions: Record<string, unknown> = {
model: model_parameters?.model as string | undefined,
region: BEDROCK_AWS_DEFAULT_REGION,
};
const configOptions: Record<string, unknown> = {};
const llmConfig = bedrockOutputParser(
bedrockInputParser.parse(
removeNullishValues({ ...requestOptions, ...(model_parameters ?? {}) }),
),
) as InitializeResultBase['llmConfig'] & {
region?: string;
client?: BedrockRuntimeClient;
credentials?: BedrockCredentials;
endpointHost?: string;
};
/** Only include credentials if they're complete (accessKeyId and secretAccessKey are both set) */
const hasCompleteCredentials =
credentials &&
typeof credentials.accessKeyId === 'string' &&
credentials.accessKeyId !== '' &&
typeof credentials.secretAccessKey === 'string' &&
credentials.secretAccessKey !== '';
if (PROXY) {
const proxyAgent = new HttpsProxyAgent(PROXY);
// Create a custom BedrockRuntimeClient with proxy-enabled request handler.
// ChatBedrockConverse will use this pre-configured client directly instead of
// creating its own. Credentials are only set if explicitly provided; otherwise
// the AWS SDK's default credential provider chain is used (instance profiles,
// AWS profiles, environment variables, etc.)
const customClient = new BedrockRuntimeClient({
region: (llmConfig.region as string) ?? BEDROCK_AWS_DEFAULT_REGION,
...(hasCompleteCredentials && {
credentials: credentials as { accessKeyId: string; secretAccessKey: string },
}),
requestHandler: new NodeHttpHandler({
httpAgent: proxyAgent,
httpsAgent: proxyAgent,
}),
...(BEDROCK_REVERSE_PROXY && {
endpoint: `https://${BEDROCK_REVERSE_PROXY}`,
}),
});
llmConfig.client = customClient;
} else {
// When not using a proxy, let ChatBedrockConverse create its own client
// by providing credentials and endpoint separately
if (credentials) {
llmConfig.credentials = credentials;
}
if (BEDROCK_REVERSE_PROXY) {
llmConfig.endpointHost = BEDROCK_REVERSE_PROXY;
}
}
return {
llmConfig,
configOptions,
};
}

View file

@ -0,0 +1,99 @@
import { Providers } from '@librechat/agents';
import { EModelEndpoint } from 'librechat-data-provider';
import type { TEndpoint } from 'librechat-data-provider';
import type { AppConfig } from '@librechat/data-schemas';
import type { BaseInitializeParams, InitializeResultBase } from '~/types';
import { initializeAnthropic } from './anthropic/initialize';
import { initializeBedrock } from './bedrock/initialize';
import { initializeCustom } from './custom/initialize';
import { initializeGoogle } from './google/initialize';
import { initializeOpenAI } from './openai/initialize';
import { getCustomEndpointConfig } from '~/app/config';
/**
* Type for initialize functions
*/
export type InitializeFn = (params: BaseInitializeParams) => Promise<InitializeResultBase>;
/**
* Check if the provider is a known custom provider
* @param provider - The provider string
* @returns True if the provider is a known custom provider, false otherwise
*/
export function isKnownCustomProvider(provider?: string): boolean {
return [Providers.XAI, Providers.DEEPSEEK, Providers.OPENROUTER].includes(
(provider?.toLowerCase() ?? '') as Providers,
);
}
/**
* Provider configuration map mapping providers to their initialization functions
*/
export const providerConfigMap: Record<string, InitializeFn> = {
[Providers.XAI]: initializeCustom,
[Providers.DEEPSEEK]: initializeCustom,
[Providers.OPENROUTER]: initializeCustom,
[EModelEndpoint.openAI]: initializeOpenAI,
[EModelEndpoint.google]: initializeGoogle,
[EModelEndpoint.bedrock]: initializeBedrock,
[EModelEndpoint.azureOpenAI]: initializeOpenAI,
[EModelEndpoint.anthropic]: initializeAnthropic,
};
/**
* Result from getProviderConfig
*/
export interface ProviderConfigResult {
/** The initialization function for this provider */
getOptions: InitializeFn;
/** The resolved provider name (may be different from input if normalized) */
overrideProvider: string;
/** Custom endpoint configuration (if applicable) */
customEndpointConfig?: Partial<TEndpoint>;
}
/**
* Get the provider configuration and override endpoint based on the provider string
*
* @param params - Configuration parameters
* @param params.provider - The provider string
* @param params.appConfig - The application configuration
* @returns Provider configuration including getOptions function, override provider, and custom config
* @throws Error if provider is not supported
*/
export function getProviderConfig({
provider,
appConfig,
}: {
provider: string;
appConfig?: AppConfig;
}): ProviderConfigResult {
let getOptions = providerConfigMap[provider];
let overrideProvider = provider;
let customEndpointConfig: Partial<TEndpoint> | undefined;
if (!getOptions && providerConfigMap[provider.toLowerCase()] != null) {
overrideProvider = provider.toLowerCase();
getOptions = providerConfigMap[overrideProvider];
} else if (!getOptions) {
customEndpointConfig = getCustomEndpointConfig({ endpoint: provider, appConfig });
if (!customEndpointConfig) {
throw new Error(`Provider ${provider} not supported`);
}
getOptions = initializeCustom;
overrideProvider = Providers.OPENAI;
}
if (isKnownCustomProvider(overrideProvider) && !customEndpointConfig) {
customEndpointConfig = getCustomEndpointConfig({ endpoint: provider, appConfig });
if (!customEndpointConfig) {
throw new Error(`Provider ${provider} not supported`);
}
}
return {
getOptions,
overrideProvider,
customEndpointConfig,
};
}

View file

@ -1 +1,2 @@
export * from './config';
export * from './initialize';

View file

@ -0,0 +1,180 @@
import {
CacheKeys,
ErrorTypes,
envVarRegex,
FetchTokenConfig,
extractEnvVariable,
} from 'librechat-data-provider';
import type { TEndpoint } from 'librechat-data-provider';
import type { AppConfig } from '@librechat/data-schemas';
import type { BaseInitializeParams, InitializeResultBase, EndpointTokenConfig } from '~/types';
import { getOpenAIConfig } from '~/endpoints/openai/config';
import { getCustomEndpointConfig } from '~/app/config';
import { fetchModels } from '~/endpoints/models';
import { isUserProvided, checkUserKeyExpiry } from '~/utils';
import { standardCache } from '~/cache';
const { PROXY } = process.env;
/**
* Builds custom options from endpoint configuration
*/
function buildCustomOptions(
endpointConfig: Partial<TEndpoint>,
appConfig?: AppConfig,
endpointTokenConfig?: Record<string, unknown>,
) {
const customOptions: Record<string, unknown> = {
headers: endpointConfig.headers,
addParams: endpointConfig.addParams,
dropParams: endpointConfig.dropParams,
customParams: endpointConfig.customParams,
titleConvo: endpointConfig.titleConvo,
titleModel: endpointConfig.titleModel,
forcePrompt: endpointConfig.forcePrompt,
summaryModel: endpointConfig.summaryModel,
modelDisplayLabel: endpointConfig.modelDisplayLabel,
titleMethod: endpointConfig.titleMethod ?? 'completion',
contextStrategy: endpointConfig.summarize ? 'summarize' : null,
directEndpoint: endpointConfig.directEndpoint,
titleMessageRole: endpointConfig.titleMessageRole,
streamRate: endpointConfig.streamRate,
endpointTokenConfig,
};
const allConfig = appConfig?.endpoints?.all;
if (allConfig) {
customOptions.streamRate = allConfig.streamRate;
}
return customOptions;
}
/**
* Initializes a custom endpoint client configuration.
* This function handles custom endpoints defined in librechat.yaml, including
* user-provided API keys and URLs.
*
* @param params - Configuration parameters
* @returns Promise resolving to endpoint configuration options
* @throws Error if config is missing, API key is not provided, or base URL is missing
*/
export async function initializeCustom({
req,
endpoint,
model_parameters,
db,
}: BaseInitializeParams): Promise<InitializeResultBase> {
const appConfig = req.config;
const { key: expiresAt } = req.body;
const endpointConfig = getCustomEndpointConfig({
endpoint,
appConfig,
});
if (!endpointConfig) {
throw new Error(`Config not found for the ${endpoint} custom endpoint.`);
}
const CUSTOM_API_KEY = extractEnvVariable(endpointConfig.apiKey ?? '');
const CUSTOM_BASE_URL = extractEnvVariable(endpointConfig.baseURL ?? '');
if (CUSTOM_API_KEY.match(envVarRegex)) {
throw new Error(`Missing API Key for ${endpoint}.`);
}
if (CUSTOM_BASE_URL.match(envVarRegex)) {
throw new Error(`Missing Base URL for ${endpoint}.`);
}
const userProvidesKey = isUserProvided(CUSTOM_API_KEY);
const userProvidesURL = isUserProvided(CUSTOM_BASE_URL);
let userValues = null;
if (expiresAt && (userProvidesKey || userProvidesURL)) {
checkUserKeyExpiry(expiresAt, endpoint);
userValues = await db.getUserKeyValues({ userId: req.user?.id ?? '', name: endpoint });
}
const apiKey = userProvidesKey ? userValues?.apiKey : CUSTOM_API_KEY;
const baseURL = userProvidesURL ? userValues?.baseURL : CUSTOM_BASE_URL;
if (userProvidesKey && !apiKey) {
throw new Error(
JSON.stringify({
type: ErrorTypes.NO_USER_KEY,
}),
);
}
if (userProvidesURL && !baseURL) {
throw new Error(
JSON.stringify({
type: ErrorTypes.NO_BASE_URL,
}),
);
}
if (!apiKey) {
throw new Error(`${endpoint} API key not provided.`);
}
if (!baseURL) {
throw new Error(`${endpoint} Base URL not provided.`);
}
let endpointTokenConfig: EndpointTokenConfig | undefined;
const userId = req.user?.id ?? '';
const cache = standardCache(CacheKeys.TOKEN_CONFIG);
/** tokenConfig is an optional extended property on custom endpoints */
const hasTokenConfig = (endpointConfig as Record<string, unknown>).tokenConfig != null;
const tokenKey =
!hasTokenConfig && (userProvidesKey || userProvidesURL) ? `${endpoint}:${userId}` : endpoint;
const cachedConfig =
!hasTokenConfig &&
FetchTokenConfig[endpoint.toLowerCase() as keyof typeof FetchTokenConfig] &&
(await cache.get(tokenKey));
endpointTokenConfig = (cachedConfig as EndpointTokenConfig) || undefined;
if (
FetchTokenConfig[endpoint.toLowerCase() as keyof typeof FetchTokenConfig] &&
endpointConfig &&
endpointConfig.models?.fetch &&
!endpointTokenConfig
) {
await fetchModels({ apiKey, baseURL, name: endpoint, user: userId, tokenKey });
endpointTokenConfig = (await cache.get(tokenKey)) as EndpointTokenConfig | undefined;
}
const customOptions = buildCustomOptions(endpointConfig, appConfig, endpointTokenConfig);
const clientOptions: Record<string, unknown> = {
reverseProxyUrl: baseURL ?? null,
proxy: PROXY ?? null,
...customOptions,
};
const modelOptions = { ...(model_parameters ?? {}), user: userId };
const finalClientOptions = {
modelOptions,
...clientOptions,
};
const options = getOpenAIConfig(apiKey, finalClientOptions, endpoint);
if (options != null) {
(options as InitializeResultBase).useLegacyContent = true;
(options as InitializeResultBase).endpointTokenConfig = endpointTokenConfig;
}
const streamRate = clientOptions.streamRate as number | undefined;
if (streamRate) {
(options.llmConfig as Record<string, unknown>)._lc_stream_delay = streamRate;
}
return options;
}

View file

@ -1 +1,2 @@
export * from './llm';
export * from './initialize';

View file

@ -0,0 +1,91 @@
import path from 'path';
import { EModelEndpoint, AuthKeys } from 'librechat-data-provider';
import type {
BaseInitializeParams,
InitializeResultBase,
GoogleConfigOptions,
GoogleCredentials,
} from '~/types';
import { isEnabled, loadServiceKey, checkUserKeyExpiry } from '~/utils';
import { getGoogleConfig } from './llm';
/**
* Initializes Google/Vertex AI endpoint configuration.
* Supports both API key authentication and service account credentials.
*
* @param params - Configuration parameters
* @returns Promise resolving to Google configuration options
* @throws Error if no valid credentials are provided
*/
export async function initializeGoogle({
req,
endpoint,
model_parameters,
db,
}: BaseInitializeParams): Promise<InitializeResultBase> {
void endpoint;
const appConfig = req.config;
const { GOOGLE_KEY, GOOGLE_REVERSE_PROXY, GOOGLE_AUTH_HEADER, PROXY } = process.env;
const isUserProvided = GOOGLE_KEY === 'user_provided';
const { key: expiresAt } = req.body;
let userKey = null;
if (expiresAt && isUserProvided) {
checkUserKeyExpiry(expiresAt, EModelEndpoint.google);
userKey = await db.getUserKey({ userId: req.user?.id, name: EModelEndpoint.google });
}
let serviceKey: Record<string, unknown> = {};
/** Check if GOOGLE_KEY is provided at all (including 'user_provided') */
const isGoogleKeyProvided =
(GOOGLE_KEY && GOOGLE_KEY.trim() !== '') || (isUserProvided && userKey != null);
if (!isGoogleKeyProvided && loadServiceKey) {
/** Only attempt to load service key if GOOGLE_KEY is not provided */
try {
const serviceKeyPath =
process.env.GOOGLE_SERVICE_KEY_FILE || path.join(process.cwd(), 'data', 'auth.json');
const loadedKey = await loadServiceKey(serviceKeyPath);
if (loadedKey) {
serviceKey = loadedKey;
}
} catch {
// Service key loading failed, but that's okay if not required
serviceKey = {};
}
}
const credentials: GoogleCredentials = isUserProvided
? (userKey as GoogleCredentials)
: {
[AuthKeys.GOOGLE_SERVICE_KEY]: serviceKey,
[AuthKeys.GOOGLE_API_KEY]: GOOGLE_KEY,
};
let clientOptions: GoogleConfigOptions = {};
/** @type {undefined | TBaseEndpoint} */
const allConfig = appConfig?.endpoints?.all;
/** @type {undefined | TBaseEndpoint} */
const googleConfig = appConfig?.endpoints?.[EModelEndpoint.google];
if (googleConfig) {
clientOptions.streamRate = googleConfig.streamRate;
clientOptions.titleModel = googleConfig.titleModel;
}
if (allConfig) {
clientOptions.streamRate = allConfig.streamRate;
}
clientOptions = {
reverseProxyUrl: GOOGLE_REVERSE_PROXY ?? undefined,
authHeader: isEnabled(GOOGLE_AUTH_HEADER) ?? undefined,
proxy: PROXY ?? undefined,
modelOptions: model_parameters ?? {},
...clientOptions,
};
return getGoogleConfig(credentials, clientOptions);
}

View file

@ -1,4 +1,7 @@
export * from './anthropic';
export * from './bedrock';
export * from './config';
export * from './custom';
export * from './google';
export * from './models';
export * from './openai';
export * from './anthropic';

View file

@ -0,0 +1,628 @@
import axios from 'axios';
import { EModelEndpoint, defaultModels } from 'librechat-data-provider';
import {
fetchModels,
splitAndTrim,
getOpenAIModels,
getGoogleModels,
getBedrockModels,
getAnthropicModels,
} from './models';
jest.mock('axios');
jest.mock('~/cache', () => ({
standardCache: jest.fn().mockImplementation(() => ({
get: jest.fn().mockResolvedValue(undefined),
set: jest.fn().mockResolvedValue(true),
})),
}));
jest.mock('~/utils', () => {
const originalUtils = jest.requireActual('~/utils');
return {
...originalUtils,
processModelData: jest.fn((...args) => originalUtils.processModelData(...args)),
logAxiosError: jest.fn(),
resolveHeaders: jest.fn((options) => options?.headers || {}),
};
});
jest.mock('@librechat/data-schemas', () => ({
...jest.requireActual('@librechat/data-schemas'),
logger: {
error: jest.fn(),
warn: jest.fn(),
debug: jest.fn(),
},
}));
const mockedAxios = axios as jest.Mocked<typeof axios>;
const { logAxiosError, resolveHeaders } = jest.requireMock('~/utils');
mockedAxios.get.mockResolvedValue({
data: {
data: [{ id: 'model-1' }, { id: 'model-2' }],
},
});
describe('fetchModels', () => {
it('fetches models successfully from the API', async () => {
const models = await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com',
name: 'TestAPI',
});
expect(models).toEqual(['model-1', 'model-2']);
expect(mockedAxios.get).toHaveBeenCalledWith(
expect.stringContaining('https://api.test.com/models'),
expect.any(Object),
);
});
it('adds the user ID to the models query when option and ID are passed', async () => {
const models = await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com',
userIdQuery: true,
name: 'TestAPI',
});
expect(models).toEqual(['model-1', 'model-2']);
expect(mockedAxios.get).toHaveBeenCalledWith(
expect.stringContaining('https://api.test.com/models?user=user123'),
expect.any(Object),
);
});
it('should pass custom headers to the API request', async () => {
const customHeaders = {
'X-Custom-Header': 'custom-value',
'X-API-Version': 'v2',
};
await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com',
name: 'TestAPI',
headers: customHeaders,
});
expect(mockedAxios.get).toHaveBeenCalledWith(
expect.stringContaining('https://api.test.com/models'),
expect.objectContaining({
headers: expect.objectContaining({
'X-Custom-Header': 'custom-value',
'X-API-Version': 'v2',
Authorization: 'Bearer testApiKey',
}),
}),
);
});
it('should handle null headers gracefully', async () => {
await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com',
name: 'TestAPI',
headers: null,
});
expect(mockedAxios.get).toHaveBeenCalledWith(
expect.stringContaining('https://api.test.com/models'),
expect.objectContaining({
headers: expect.objectContaining({
Authorization: 'Bearer testApiKey',
}),
}),
);
});
it('should handle undefined headers gracefully', async () => {
await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com',
name: 'TestAPI',
headers: undefined,
});
expect(mockedAxios.get).toHaveBeenCalledWith(
expect.stringContaining('https://api.test.com/models'),
expect.objectContaining({
headers: expect.objectContaining({
Authorization: 'Bearer testApiKey',
}),
}),
);
});
afterEach(() => {
jest.clearAllMocks();
});
});
describe('fetchModels with createTokenConfig true', () => {
const data = {
data: [
{
id: 'model-1',
pricing: {
prompt: '0.002',
completion: '0.001',
},
context_length: 1024,
},
{
id: 'model-2',
pricing: {
prompt: '0.003',
completion: '0.0015',
},
context_length: 2048,
},
],
};
beforeEach(() => {
mockedAxios.get.mockResolvedValue({ data });
});
it('creates and stores token configuration if createTokenConfig is true', async () => {
await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com',
createTokenConfig: true,
});
const { processModelData } = jest.requireMock('~/utils');
expect(processModelData).toHaveBeenCalled();
expect(processModelData).toHaveBeenCalledWith(data);
});
});
describe('getOpenAIModels', () => {
let originalEnv: NodeJS.ProcessEnv;
beforeEach(() => {
originalEnv = { ...process.env };
mockedAxios.get.mockRejectedValue(new Error('Network error'));
});
afterEach(() => {
process.env = originalEnv;
mockedAxios.get.mockReset();
});
it('returns default models when no environment configurations are provided (and fetch fails)', async () => {
const models = await getOpenAIModels({ user: 'user456' });
expect(models).toContain('gpt-4');
});
it('returns `AZURE_OPENAI_MODELS` with `azure` flag (and fetch fails)', async () => {
process.env.AZURE_OPENAI_MODELS = 'azure-model,azure-model-2';
const models = await getOpenAIModels({ azure: true });
expect(models).toEqual(expect.arrayContaining(['azure-model', 'azure-model-2']));
});
it('returns `OPENAI_MODELS` with no flags (and fetch fails)', async () => {
process.env.OPENAI_MODELS = 'openai-model,openai-model-2';
const models = await getOpenAIModels({});
expect(models).toEqual(expect.arrayContaining(['openai-model', 'openai-model-2']));
});
it('utilizes proxy configuration when PROXY is set', async () => {
mockedAxios.get.mockResolvedValue({
data: {
data: [],
},
});
process.env.PROXY = 'http://localhost:8888';
process.env.OPENAI_API_KEY = 'mockedApiKey';
await getOpenAIModels({ user: 'user456' });
expect(mockedAxios.get).toHaveBeenCalledWith(
expect.any(String),
expect.objectContaining({
httpsAgent: expect.anything(),
}),
);
});
});
describe('getOpenAIModels sorting behavior', () => {
let originalEnv: NodeJS.ProcessEnv;
beforeEach(() => {
originalEnv = { ...process.env };
process.env.OPENAI_API_KEY = 'mockedApiKey';
mockedAxios.get.mockResolvedValue({
data: {
data: [
{ id: 'gpt-3.5-turbo-instruct-0914' },
{ id: 'gpt-3.5-turbo-instruct' },
{ id: 'gpt-3.5-turbo' },
{ id: 'gpt-4-0314' },
{ id: 'gpt-4-turbo-preview' },
],
},
});
});
afterEach(() => {
process.env = originalEnv;
jest.clearAllMocks();
});
it('ensures instruct models are listed last', async () => {
const models = await getOpenAIModels({ user: 'user456' });
expect(models[models.length - 1]).toMatch(/instruct/);
const instructIndexes = models
.map((model, index) => (model.includes('instruct') ? index : -1))
.filter((index) => index !== -1);
const nonInstructIndexes = models
.map((model, index) => (!model.includes('instruct') ? index : -1))
.filter((index) => index !== -1);
expect(Math.max(...nonInstructIndexes)).toBeLessThan(Math.min(...instructIndexes));
const expectedOrder = [
'gpt-3.5-turbo',
'gpt-4-0314',
'gpt-4-turbo-preview',
'gpt-3.5-turbo-instruct-0914',
'gpt-3.5-turbo-instruct',
];
expect(models).toEqual(expectedOrder);
});
});
describe('fetchModels with Ollama specific logic', () => {
const mockOllamaData = {
data: {
models: [{ name: 'Ollama-Base' }, { name: 'Ollama-Advanced' }],
},
};
beforeEach(() => {
mockedAxios.get.mockResolvedValue(mockOllamaData);
});
afterEach(() => {
jest.clearAllMocks();
});
it('should fetch Ollama models when name starts with "ollama"', async () => {
const models = await fetchModels({
user: 'user789',
apiKey: 'testApiKey',
baseURL: 'https://api.ollama.test.com',
name: 'OllamaAPI',
});
expect(models).toEqual(['Ollama-Base', 'Ollama-Advanced']);
expect(mockedAxios.get).toHaveBeenCalledWith('https://api.ollama.test.com/api/tags', {
headers: {},
timeout: 5000,
});
});
it('should pass headers and user object to Ollama fetchModels', async () => {
const customHeaders = {
'Content-Type': 'application/json',
Authorization: 'Bearer custom-token',
};
const userObject = {
id: 'user789',
email: 'test@example.com',
};
(resolveHeaders as jest.Mock).mockReturnValueOnce(customHeaders);
const models = await fetchModels({
user: 'user789',
apiKey: 'testApiKey',
baseURL: 'https://api.ollama.test.com',
name: 'ollama',
headers: customHeaders,
userObject,
});
expect(models).toEqual(['Ollama-Base', 'Ollama-Advanced']);
expect(resolveHeaders).toHaveBeenCalledWith({
headers: customHeaders,
user: userObject,
});
expect(mockedAxios.get).toHaveBeenCalledWith('https://api.ollama.test.com/api/tags', {
headers: customHeaders,
timeout: 5000,
});
});
it('should handle errors gracefully when fetching Ollama models fails and fallback to OpenAI-compatible fetch', async () => {
mockedAxios.get.mockRejectedValueOnce(new Error('Ollama API error'));
mockedAxios.get.mockResolvedValueOnce({
data: {
data: [{ id: 'fallback-model-1' }, { id: 'fallback-model-2' }],
},
});
const models = await fetchModels({
user: 'user789',
apiKey: 'testApiKey',
baseURL: 'https://api.ollama.test.com',
name: 'OllamaAPI',
});
expect(models).toEqual(['fallback-model-1', 'fallback-model-2']);
expect(logAxiosError).toHaveBeenCalledWith({
message:
'Failed to fetch models from Ollama API. Attempting to fetch via OpenAI-compatible endpoint.',
error: expect.any(Error),
});
expect(mockedAxios.get).toHaveBeenCalledTimes(2);
});
it('should return an empty array if no baseURL is provided', async () => {
const models = await fetchModels({
user: 'user789',
apiKey: 'testApiKey',
name: 'OllamaAPI',
});
expect(models).toEqual([]);
});
it('should not fetch Ollama models if the name does not start with "ollama"', async () => {
mockedAxios.get.mockResolvedValue({
data: {
data: [{ id: 'model-1' }, { id: 'model-2' }],
},
});
const models = await fetchModels({
user: 'user789',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com',
name: 'TestAPI',
});
expect(models).toEqual(['model-1', 'model-2']);
expect(mockedAxios.get).toHaveBeenCalledWith('https://api.test.com/models', expect.any(Object));
});
});
describe('fetchModels URL construction with trailing slashes', () => {
beforeEach(() => {
mockedAxios.get.mockResolvedValue({
data: {
data: [{ id: 'model-1' }, { id: 'model-2' }],
},
});
});
afterEach(() => {
jest.clearAllMocks();
});
it('should not create double slashes when baseURL has a trailing slash', async () => {
await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com/v1/',
name: 'TestAPI',
});
expect(mockedAxios.get).toHaveBeenCalledWith(
'https://api.test.com/v1/models',
expect.any(Object),
);
});
it('should handle baseURL without trailing slash normally', async () => {
await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com/v1',
name: 'TestAPI',
});
expect(mockedAxios.get).toHaveBeenCalledWith(
'https://api.test.com/v1/models',
expect.any(Object),
);
});
it('should handle baseURL with multiple trailing slashes', async () => {
await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com/v1///',
name: 'TestAPI',
});
expect(mockedAxios.get).toHaveBeenCalledWith(
'https://api.test.com/v1/models',
expect.any(Object),
);
});
it('should correctly append query params after stripping trailing slashes', async () => {
await fetchModels({
user: 'user123',
apiKey: 'testApiKey',
baseURL: 'https://api.test.com/v1/',
name: 'TestAPI',
userIdQuery: true,
});
expect(mockedAxios.get).toHaveBeenCalledWith(
'https://api.test.com/v1/models?user=user123',
expect.any(Object),
);
});
});
describe('splitAndTrim', () => {
it('should split a string by commas and trim each value', () => {
const input = ' model1, model2 , model3,model4 ';
const expected = ['model1', 'model2', 'model3', 'model4'];
expect(splitAndTrim(input)).toEqual(expected);
});
it('should return an empty array for empty input', () => {
expect(splitAndTrim('')).toEqual([]);
});
it('should return an empty array for null input', () => {
expect(splitAndTrim(null)).toEqual([]);
});
it('should return an empty array for undefined input', () => {
expect(splitAndTrim(undefined)).toEqual([]);
});
it('should filter out empty values after trimming', () => {
const input = 'model1,, ,model2,';
const expected = ['model1', 'model2'];
expect(splitAndTrim(input)).toEqual(expected);
});
});
describe('getAnthropicModels', () => {
let originalEnv: NodeJS.ProcessEnv;
beforeEach(() => {
originalEnv = { ...process.env };
});
afterEach(() => {
process.env = originalEnv;
jest.clearAllMocks();
});
it('returns default models when ANTHROPIC_MODELS is not set', async () => {
delete process.env.ANTHROPIC_MODELS;
const models = await getAnthropicModels();
expect(models).toEqual(defaultModels[EModelEndpoint.anthropic]);
});
it('returns models from ANTHROPIC_MODELS when set', async () => {
process.env.ANTHROPIC_MODELS = 'claude-1, claude-2 ';
const models = await getAnthropicModels();
expect(models).toEqual(['claude-1', 'claude-2']);
});
it('should use Anthropic-specific headers when fetching models', async () => {
delete process.env.ANTHROPIC_MODELS;
process.env.ANTHROPIC_API_KEY = 'test-anthropic-key';
mockedAxios.get.mockResolvedValue({
data: {
data: [{ id: 'claude-3' }, { id: 'claude-4' }],
},
});
await fetchModels({
user: 'user123',
apiKey: 'test-anthropic-key',
baseURL: 'https://api.anthropic.com/v1',
name: EModelEndpoint.anthropic,
});
expect(mockedAxios.get).toHaveBeenCalledWith(
expect.any(String),
expect.objectContaining({
headers: {
'x-api-key': 'test-anthropic-key',
'anthropic-version': expect.any(String),
},
}),
);
});
it('should pass custom headers for Anthropic endpoint', async () => {
const customHeaders = {
'X-Custom-Header': 'custom-value',
};
mockedAxios.get.mockResolvedValue({
data: {
data: [{ id: 'claude-3' }],
},
});
await fetchModels({
user: 'user123',
apiKey: 'test-anthropic-key',
baseURL: 'https://api.anthropic.com/v1',
name: EModelEndpoint.anthropic,
headers: customHeaders,
});
expect(mockedAxios.get).toHaveBeenCalledWith(
expect.any(String),
expect.objectContaining({
headers: {
'x-api-key': 'test-anthropic-key',
'anthropic-version': expect.any(String),
},
}),
);
});
});
describe('getGoogleModels', () => {
let originalEnv: NodeJS.ProcessEnv;
beforeEach(() => {
originalEnv = { ...process.env };
});
afterEach(() => {
process.env = originalEnv;
});
it('returns default models when GOOGLE_MODELS is not set', () => {
delete process.env.GOOGLE_MODELS;
const models = getGoogleModels();
expect(models).toEqual(defaultModels[EModelEndpoint.google]);
});
it('returns models from GOOGLE_MODELS when set', () => {
process.env.GOOGLE_MODELS = 'gemini-pro, bard ';
const models = getGoogleModels();
expect(models).toEqual(['gemini-pro', 'bard']);
});
});
describe('getBedrockModels', () => {
let originalEnv: NodeJS.ProcessEnv;
beforeEach(() => {
originalEnv = { ...process.env };
});
afterEach(() => {
process.env = originalEnv;
});
it('returns default models when BEDROCK_AWS_MODELS is not set', () => {
delete process.env.BEDROCK_AWS_MODELS;
const models = getBedrockModels();
expect(models).toEqual(defaultModels[EModelEndpoint.bedrock]);
});
it('returns models from BEDROCK_AWS_MODELS when set', () => {
process.env.BEDROCK_AWS_MODELS = 'anthropic.claude-v2, ai21.j2-ultra ';
const models = getBedrockModels();
expect(models).toEqual(['anthropic.claude-v2', 'ai21.j2-ultra']);
});
});

View file

@ -0,0 +1,383 @@
import axios from 'axios';
import { logger } from '@librechat/data-schemas';
import { HttpsProxyAgent } from 'https-proxy-agent';
import { CacheKeys, KnownEndpoints, EModelEndpoint, defaultModels } from 'librechat-data-provider';
import type { IUser } from '@librechat/data-schemas';
import {
processModelData,
extractBaseURL,
isUserProvided,
resolveHeaders,
deriveBaseURL,
logAxiosError,
inputSchema,
} from '~/utils';
import { standardCache } from '~/cache';
export interface FetchModelsParams {
/** User ID for API requests */
user?: string;
/** API key for authentication */
apiKey: string;
/** Base URL for the API */
baseURL?: string;
/** Endpoint name (defaults to 'openAI') */
name?: string;
/** Whether directEndpoint was configured */
direct?: boolean;
/** Whether to fetch from Azure */
azure?: boolean;
/** Whether to send user ID as query parameter */
userIdQuery?: boolean;
/** Whether to create token configuration from API response */
createTokenConfig?: boolean;
/** Cache key for token configuration (uses name if omitted) */
tokenKey?: string;
/** Optional headers for the request */
headers?: Record<string, string> | null;
/** Optional user object for header resolution */
userObject?: Partial<IUser>;
}
/**
* Fetches Ollama models from the specified base API path.
* @param baseURL - The Ollama server URL
* @param options - Optional configuration
* @returns Promise resolving to array of model names
*/
async function fetchOllamaModels(
baseURL: string,
options: { headers?: Record<string, string> | null; user?: Partial<IUser> } = {},
): Promise<string[]> {
if (!baseURL) {
return [];
}
const ollamaEndpoint = deriveBaseURL(baseURL);
const resolvedHeaders = resolveHeaders({
headers: options.headers ?? undefined,
user: options.user,
});
const response = await axios.get<{ models: Array<{ name: string }> }>(
`${ollamaEndpoint}/api/tags`,
{
headers: resolvedHeaders,
timeout: 5000,
},
);
return response.data.models.map((tag) => tag.name);
}
/**
* Splits a string by commas and trims each resulting value.
* @param input - The input string to split.
* @returns An array of trimmed values.
*/
export function splitAndTrim(input: string | null | undefined): string[] {
if (!input || typeof input !== 'string') {
return [];
}
return input
.split(',')
.map((item) => item.trim())
.filter(Boolean);
}
/**
* Fetches models from the specified base API path or Azure, based on the provided configuration.
*
* @param params - The parameters for fetching the models.
* @returns A promise that resolves to an array of model identifiers.
*/
export async function fetchModels({
user,
apiKey,
baseURL: _baseURL,
name = EModelEndpoint.openAI,
direct = false,
azure = false,
userIdQuery = false,
createTokenConfig = true,
tokenKey,
headers,
userObject,
}: FetchModelsParams): Promise<string[]> {
let models: string[] = [];
const baseURL = direct ? extractBaseURL(_baseURL ?? '') : _baseURL;
if (!baseURL && !azure) {
return models;
}
if (!apiKey) {
return models;
}
if (name && name.toLowerCase().startsWith(KnownEndpoints.ollama)) {
try {
return await fetchOllamaModels(baseURL ?? '', { headers, user: userObject });
} catch (ollamaError) {
const logMessage =
'Failed to fetch models from Ollama API. Attempting to fetch via OpenAI-compatible endpoint.';
logAxiosError({ message: logMessage, error: ollamaError as Error });
}
}
try {
const options: {
headers: Record<string, string>;
timeout: number;
httpsAgent?: HttpsProxyAgent;
} = {
headers: {
...(headers ?? {}),
},
timeout: 5000,
};
if (name === EModelEndpoint.anthropic) {
options.headers = {
'x-api-key': apiKey,
'anthropic-version': process.env.ANTHROPIC_VERSION || '2023-06-01',
};
} else {
options.headers.Authorization = `Bearer ${apiKey}`;
}
if (process.env.PROXY) {
options.httpsAgent = new HttpsProxyAgent(process.env.PROXY);
}
if (process.env.OPENAI_ORGANIZATION && baseURL?.includes('openai')) {
options.headers['OpenAI-Organization'] = process.env.OPENAI_ORGANIZATION;
}
const url = new URL(`${(baseURL ?? '').replace(/\/+$/, '')}${azure ? '' : '/models'}`);
if (user && userIdQuery) {
url.searchParams.append('user', user);
}
const res = await axios.get(url.toString(), options);
const input = res.data;
const validationResult = inputSchema.safeParse(input);
if (validationResult.success && createTokenConfig) {
const endpointTokenConfig = processModelData(input);
const cache = standardCache(CacheKeys.TOKEN_CONFIG);
await cache.set(tokenKey ?? name, endpointTokenConfig);
}
models = input.data.map((item: { id: string }) => item.id);
} catch (error) {
const logMessage = `Failed to fetch models from ${azure ? 'Azure ' : ''}${name} API`;
logAxiosError({ message: logMessage, error: error as Error });
}
return models;
}
/** Options for fetching OpenAI models */
export interface GetOpenAIModelsOptions {
/** User ID for API requests */
user?: string;
/** Whether to fetch from Azure */
azure?: boolean;
/** Whether to fetch models for the Assistants endpoint */
assistants?: boolean;
/** OpenAI API key (if not using environment variable) */
openAIApiKey?: string;
/** Whether user provides their own API key */
userProvidedOpenAI?: boolean;
}
/**
* Fetches models from OpenAI or Azure based on the provided options.
* @param opts - Options for fetching models
* @param _models - Fallback models array
* @returns Promise resolving to array of model IDs
*/
export async function fetchOpenAIModels(
opts: GetOpenAIModelsOptions,
_models: string[] = [],
): Promise<string[]> {
let models = _models.slice() ?? [];
const apiKey = opts.openAIApiKey ?? process.env.OPENAI_API_KEY;
const openaiBaseURL = 'https://api.openai.com/v1';
let baseURL = openaiBaseURL;
let reverseProxyUrl = process.env.OPENAI_REVERSE_PROXY;
if (opts.assistants && process.env.ASSISTANTS_BASE_URL) {
reverseProxyUrl = process.env.ASSISTANTS_BASE_URL;
} else if (opts.azure) {
return models;
}
if (reverseProxyUrl) {
baseURL = extractBaseURL(reverseProxyUrl) ?? openaiBaseURL;
}
const modelsCache = standardCache(CacheKeys.MODEL_QUERIES);
const cachedModels = await modelsCache.get(baseURL);
if (cachedModels) {
return cachedModels as string[];
}
if (baseURL || opts.azure) {
models = await fetchModels({
apiKey: apiKey ?? '',
baseURL,
azure: opts.azure,
user: opts.user,
name: EModelEndpoint.openAI,
});
}
if (models.length === 0) {
return _models;
}
if (baseURL === openaiBaseURL) {
const regex = /(text-davinci-003|gpt-|o\d+)/;
const excludeRegex = /audio|realtime/;
models = models.filter((model) => regex.test(model) && !excludeRegex.test(model));
const instructModels = models.filter((model) => model.includes('instruct'));
const otherModels = models.filter((model) => !model.includes('instruct'));
models = otherModels.concat(instructModels);
}
await modelsCache.set(baseURL, models);
return models;
}
/**
* Loads the default models for OpenAI or Azure.
* @param opts - Options for getting models
* @returns Promise resolving to array of model IDs
*/
export async function getOpenAIModels(opts: GetOpenAIModelsOptions = {}): Promise<string[]> {
let models = defaultModels[EModelEndpoint.openAI];
if (opts.assistants) {
models = defaultModels[EModelEndpoint.assistants];
} else if (opts.azure) {
models = defaultModels[EModelEndpoint.azureAssistants];
}
let key: string;
if (opts.assistants) {
key = 'ASSISTANTS_MODELS';
} else if (opts.azure) {
key = 'AZURE_OPENAI_MODELS';
} else {
key = 'OPENAI_MODELS';
}
if (process.env[key]) {
return splitAndTrim(process.env[key]);
}
if (opts.userProvidedOpenAI) {
return models;
}
return await fetchOpenAIModels(opts, models);
}
/**
* Fetches models from the Anthropic API.
* @param opts - Options for fetching models
* @param _models - Fallback models array
* @returns Promise resolving to array of model IDs
*/
export async function fetchAnthropicModels(
opts: { user?: string } = {},
_models: string[] = [],
): Promise<string[]> {
let models = _models.slice() ?? [];
const apiKey = process.env.ANTHROPIC_API_KEY;
const anthropicBaseURL = 'https://api.anthropic.com/v1';
let baseURL = anthropicBaseURL;
const reverseProxyUrl = process.env.ANTHROPIC_REVERSE_PROXY;
if (reverseProxyUrl) {
baseURL = extractBaseURL(reverseProxyUrl) ?? anthropicBaseURL;
}
if (!apiKey) {
return models;
}
const modelsCache = standardCache(CacheKeys.MODEL_QUERIES);
const cachedModels = await modelsCache.get(baseURL);
if (cachedModels) {
return cachedModels as string[];
}
if (baseURL) {
models = await fetchModels({
apiKey,
baseURL,
user: opts.user,
name: EModelEndpoint.anthropic,
tokenKey: EModelEndpoint.anthropic,
});
}
if (models.length === 0) {
return _models;
}
await modelsCache.set(baseURL, models);
return models;
}
/**
* Gets Anthropic models from environment or API.
* @param opts - Options for fetching models
* @returns Promise resolving to array of model IDs
*/
export async function getAnthropicModels(opts: { user?: string } = {}): Promise<string[]> {
const models = defaultModels[EModelEndpoint.anthropic];
if (process.env.ANTHROPIC_MODELS) {
return splitAndTrim(process.env.ANTHROPIC_MODELS);
}
if (isUserProvided(process.env.ANTHROPIC_API_KEY)) {
return models;
}
try {
return await fetchAnthropicModels(opts, models);
} catch (error) {
logger.error('Error fetching Anthropic models:', error);
return models;
}
}
/**
* Gets Google models from environment or defaults.
* @returns Array of model IDs
*/
export function getGoogleModels(): string[] {
let models = defaultModels[EModelEndpoint.google];
if (process.env.GOOGLE_MODELS) {
models = splitAndTrim(process.env.GOOGLE_MODELS);
}
return models;
}
/**
* Gets Bedrock models from environment or defaults.
* @returns Array of model IDs
*/
export function getBedrockModels(): string[] {
let models = defaultModels[EModelEndpoint.bedrock];
if (process.env.BEDROCK_AWS_MODELS) {
models = splitAndTrim(process.env.BEDROCK_AWS_MODELS);
}
return models;
}

View file

@ -1,13 +1,11 @@
import { ErrorTypes, EModelEndpoint, mapModelToAzureConfig } from 'librechat-data-provider';
import type {
InitializeOpenAIOptionsParams,
BaseInitializeParams,
InitializeResultBase,
OpenAIConfigOptions,
LLMConfigResult,
UserKeyValues,
} from '~/types';
import { getAzureCredentials } from '~/utils/azure';
import { isUserProvided } from '~/utils/common';
import { resolveHeaders } from '~/utils/env';
import { getAzureCredentials, resolveHeaders, isUserProvided, checkUserKeyExpiry } from '~/utils';
import { getOpenAIConfig } from './config';
/**
@ -18,25 +16,18 @@ import { getOpenAIConfig } from './config';
* @returns Promise resolving to OpenAI configuration options
* @throws Error if API key is missing or user key has expired
*/
export const initializeOpenAI = async ({
export async function initializeOpenAI({
req,
appConfig,
overrideModel,
endpointOption,
overrideEndpoint,
getUserKeyValues,
checkUserKeyExpiry,
}: InitializeOpenAIOptionsParams): Promise<LLMConfigResult> => {
endpoint,
model_parameters,
db,
}: BaseInitializeParams): Promise<InitializeResultBase> {
const appConfig = req.config;
const { PROXY, OPENAI_API_KEY, AZURE_API_KEY, OPENAI_REVERSE_PROXY, AZURE_OPENAI_BASEURL } =
process.env;
const { key: expiresAt } = req.body;
const modelName = overrideModel ?? req.body.model;
const endpoint = overrideEndpoint ?? req.body.endpoint;
if (!endpoint) {
throw new Error('Endpoint is required');
}
const modelName = model_parameters?.model as string | undefined;
const credentials = {
[EModelEndpoint.openAI]: OPENAI_API_KEY,
@ -54,7 +45,7 @@ export const initializeOpenAI = async ({
let userValues: UserKeyValues | null = null;
if (expiresAt && (userProvidesKey || userProvidesURL)) {
checkUserKeyExpiry(expiresAt, endpoint);
userValues = await getUserKeyValues({ userId: req.user.id, name: endpoint });
userValues = await db.getUserKeyValues({ userId: req.user?.id ?? '', name: endpoint });
}
let apiKey = userProvidesKey
@ -71,7 +62,8 @@ export const initializeOpenAI = async ({
};
const isAzureOpenAI = endpoint === EModelEndpoint.azureOpenAI;
const azureConfig = isAzureOpenAI && appConfig.endpoints?.[EModelEndpoint.azureOpenAI];
const azureConfig = isAzureOpenAI && appConfig?.endpoints?.[EModelEndpoint.azureOpenAI];
let isServerless = false;
if (isAzureOpenAI && azureConfig) {
const { modelGroupMap, groupMap } = azureConfig;
@ -85,6 +77,7 @@ export const initializeOpenAI = async ({
modelGroupMap,
groupMap,
});
isServerless = serverless === true;
clientOptions.reverseProxyUrl = configBaseURL ?? clientOptions.reverseProxyUrl;
clientOptions.headers = resolveHeaders({
@ -99,9 +92,9 @@ export const initializeOpenAI = async ({
}
apiKey = azureOptions.azureOpenAIApiKey;
clientOptions.azure = !serverless ? azureOptions : undefined;
clientOptions.azure = !isServerless ? azureOptions : undefined;
if (serverless === true) {
if (isServerless) {
clientOptions.defaultQuery = azureOptions.azureOpenAIApiVersion
? { 'api-version': azureOptions.azureOpenAIApiVersion }
: undefined;
@ -130,9 +123,9 @@ export const initializeOpenAI = async ({
}
const modelOptions = {
...endpointOption.model_parameters,
...(model_parameters ?? {}),
model: modelName,
user: req.user.id,
user: req.user?.id,
};
const finalClientOptions: OpenAIConfigOptions = {
@ -142,8 +135,13 @@ export const initializeOpenAI = async ({
const options = getOpenAIConfig(apiKey, finalClientOptions, endpoint);
const openAIConfig = appConfig.endpoints?.[EModelEndpoint.openAI];
const allConfig = appConfig.endpoints?.all;
/** Set useLegacyContent for Azure serverless deployments */
if (isServerless) {
(options as InitializeResultBase).useLegacyContent = true;
}
const openAIConfig = appConfig?.endpoints?.[EModelEndpoint.openAI];
const allConfig = appConfig?.endpoints?.all;
const azureRate = modelName?.includes('gpt-4') ? 30 : 17;
let streamRate: number | undefined;
@ -163,4 +161,4 @@ export const initializeOpenAI = async ({
}
return options;
};
}