🚀 feat: Enhance Model Handling, Logging & xAI Agent Support (#6182)

* chore: update @librechat/agents to version 2.1.9

* feat: xAI standalone provider for agents

* chore: bump librechat-data-provider version to 0.7.6997

* fix: reorder import statements and enhance user listing output

* fix: Update Docker Compose commands to support v2 syntax with fallback

* 🔧 fix: drop `reasoning_effort` for o1-preview/mini models

* chore: requireLocalAuth logging

* fix: edge case artifact message editing logic to handle `new` conversation IDs

* fix: remove `temperature` from model options in OpenAIClient if o1-mini/preview

* fix: update type annotation for fetchPromisesMap to use Promise<string[]> instead of string[]

* feat: anthropic model fetching

* fix: update model name to use EModelEndpoint.openAI in fetchModels and fetchOpenAIModels

* fix: add error handling to modelController for loadModels

* fix: add error handling and logging for model fetching in loadDefaultModels

* ci: update getAnthropicModels tests to be asynchronous

* feat: add user ID to model options in OpenAI and custom endpoint initialization

---------

Co-authored-by: Andrei Berceanu <andreicberceanu@gmail.com>
Co-authored-by: KiGamji <maloyh44@gmail.com>
This commit is contained in:
Danny Avila 2025-03-05 12:04:26 -05:00 committed by GitHub
parent 287699331c
commit 00b2d026c1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
19 changed files with 1010 additions and 1044 deletions

View file

@ -4,7 +4,9 @@ const { HttpsProxyAgent } = require('https-proxy-agent');
const { EModelEndpoint, defaultModels, CacheKeys } = require('librechat-data-provider');
const { inputSchema, logAxiosError, extractBaseURL, processModelData } = require('~/utils');
const { OllamaClient } = require('~/app/clients/OllamaClient');
const { isUserProvided } = require('~/server/utils');
const getLogStores = require('~/cache/getLogStores');
const { logger } = require('~/config');
/**
* Splits a string by commas and trims each resulting value.
@ -42,7 +44,7 @@ const fetchModels = async ({
user,
apiKey,
baseURL,
name = 'OpenAI',
name = EModelEndpoint.openAI,
azure = false,
userIdQuery = false,
createTokenConfig = true,
@ -64,12 +66,19 @@ const fetchModels = async ({
try {
const options = {
headers: {
Authorization: `Bearer ${apiKey}`,
},
headers: {},
timeout: 5000,
};
if (name === EModelEndpoint.anthropic) {
options.headers = {
'x-api-key': apiKey,
'anthropic-version': process.env.ANTHROPIC_VERSION || '2023-06-01',
};
} else {
options.headers.Authorization = `Bearer ${apiKey}`;
}
if (process.env.PROXY) {
options.httpsAgent = new HttpsProxyAgent(process.env.PROXY);
}
@ -148,7 +157,7 @@ const fetchOpenAIModels = async (opts, _models = []) => {
baseURL,
azure: opts.azure,
user: opts.user,
name: baseURL,
name: EModelEndpoint.openAI,
});
}
@ -231,13 +240,71 @@ const getChatGPTBrowserModels = () => {
return models;
};
const getAnthropicModels = () => {
/**
* Fetches models from the Anthropic API.
* @async
* @function
* @param {object} opts - The options for fetching the models.
* @param {string} opts.user - The user ID to send to the API.
* @param {string[]} [_models=[]] - The models to use as a fallback.
*/
const fetchAnthropicModels = async (opts, _models = []) => {
let models = _models.slice() ?? [];
let apiKey = process.env.ANTHROPIC_API_KEY;
const anthropicBaseURL = 'https://api.anthropic.com/v1';
let baseURL = anthropicBaseURL;
let reverseProxyUrl = process.env.ANTHROPIC_REVERSE_PROXY;
if (reverseProxyUrl) {
baseURL = extractBaseURL(reverseProxyUrl);
}
if (!apiKey) {
return models;
}
const modelsCache = getLogStores(CacheKeys.MODEL_QUERIES);
const cachedModels = await modelsCache.get(baseURL);
if (cachedModels) {
return cachedModels;
}
if (baseURL) {
models = await fetchModels({
apiKey,
baseURL,
user: opts.user,
name: EModelEndpoint.anthropic,
tokenKey: EModelEndpoint.anthropic,
});
}
if (models.length === 0) {
return _models;
}
await modelsCache.set(baseURL, models);
return models;
};
const getAnthropicModels = async (opts = {}) => {
let models = defaultModels[EModelEndpoint.anthropic];
if (process.env.ANTHROPIC_MODELS) {
models = splitAndTrim(process.env.ANTHROPIC_MODELS);
return models;
}
return models;
if (isUserProvided(process.env.ANTHROPIC_API_KEY)) {
return models;
}
try {
return await fetchAnthropicModels(opts, models);
} catch (error) {
logger.error('Error fetching Anthropic models:', error);
return models;
}
};
const getGoogleModels = () => {