LibreChat/api/app/clients/prompts/formatMessages.spec.js

161 lines
4.2 KiB
JavaScript
Raw Normal View History

feat: ConversationSummaryBufferMemory (#973) * refactor: pass model in message edit payload, use encoder in standalone util function * feat: add summaryBuffer helper * refactor(api/messages): use new countTokens helper and add auth middleware at top * wip: ConversationSummaryBufferMemory * refactor: move pre-generation helpers to prompts dir * chore: remove console log * chore: remove test as payload will no longer carry tokenCount * chore: update getMessagesWithinTokenLimit JSDoc * refactor: optimize getMessagesForConversation and also break on summary, feat(ci): getMessagesForConversation tests * refactor(getMessagesForConvo): count '00000000-0000-0000-0000-000000000000' as root message * chore: add newer model to token map * fix: condition was point to prop of array instead of message prop * refactor(BaseClient): use object for refineMessages param, rename 'summary' to 'summaryMessage', add previous_summary refactor(getMessagesWithinTokenLimit): replace text and tokenCount if should summarize, summary, and summaryTokenCount are present fix/refactor(handleContextStrategy): use the right comparison length for context diff, and replace payload first message when a summary is present * chore: log previous_summary if debugging * refactor(formatMessage): assume if role is defined that it's a valid value * refactor(getMessagesWithinTokenLimit): remove summary logic refactor(handleContextStrategy): add usePrevSummary logic in case only summary was pruned refactor(loadHistory): initial message query will return all ordered messages but keep track of the latest summary refactor(getMessagesForConversation): use object for single param, edit jsdoc, edit all files using the method refactor(ChatGPTClient): order messages before buildPrompt is called, TODO: add convoSumBuffMemory logic * fix: undefined handling and summarizing only when shouldRefineContext is true * chore(BaseClient): fix test results omitting system role for summaries and test edge case * chore: export summaryBuffer from index file * refactor(OpenAIClient/BaseClient): move refineMessages to subclass, implement LLM initialization for summaryBuffer * feat: add OPENAI_SUMMARIZE to enable summarizing, refactor: rename client prop 'shouldRefineContext' to 'shouldSummarize', change contextStrategy value to 'summarize' from 'refine' * refactor: rename refineMessages method to summarizeMessages for clarity * chore: clarify summary future intent in .env.example * refactor(initializeLLM): handle case for either 'model' or 'modelName' being passed * feat(gptPlugins): enable summarization for plugins * refactor(gptPlugins): utilize new initializeLLM method and formatting methods for messages, use payload array for currentMessages and assign pastMessages sooner * refactor(agents): use ConversationSummaryBufferMemory for both agent types * refactor(formatMessage): optimize original method for langchain, add helper function for langchain messages, add JSDocs and tests * refactor(summaryBuffer): add helper to createSummaryBufferMemory, and use new formatting helpers * fix: forgot to spread formatMessages also took opportunity to pluralize filename * refactor: pass memory to tools, namely openapi specs. not used and may never be used by new method but added for testing * ci(formatMessages): add more exhaustive checks for langchain messages * feat: add debug env var for OpenAI * chore: delete unnecessary comments * chore: add extra note about summary feature * fix: remove tokenCount from payload instructions * fix: test fail * fix: only pass instructions to payload when defined or not empty object * refactor: fromPromptMessages is deprecated, use renamed method fromMessages * refactor: use 'includes' instead of 'startsWith' for extended OpenRouter compatibility * fix(PluginsClient.buildPromptBody): handle undefined message strings * chore: log langchain titling error * feat: getModelMaxTokens helper * feat: tokenSplit helper * feat: summary prompts updated * fix: optimize _CUT_OFF_SUMMARIZER prompt * refactor(summaryBuffer): use custom summary prompt, allow prompt to be passed, pass humanPrefix and aiPrefix to memory, along with any future variables, rename messagesToRefine to context * fix(summaryBuffer): handle edge case where messagesToRefine exceeds summary context, refactor(BaseClient): allow custom maxContextTokens to be passed to getMessagesWithinTokenLimit, add defined check before unshifting summaryMessage, update shouldSummarize based on this refactor(OpenAIClient): use getModelMaxTokens, use cut-off message method for summary if no messages were left after pruning * fix(handleContextStrategy): handle case where incoming prompt is bigger than model context * chore: rename refinedContent to splitText * chore: remove unnecessary debug log
2023-09-26 21:02:28 -04:00
const { formatMessage, formatLangChainMessages } = require('./formatMessages'); // Adjust the path accordingly
const { HumanMessage, AIMessage, SystemMessage } = require('langchain/schema');
describe('formatMessage', () => {
it('formats user message', () => {
const input = {
message: {
sender: 'user',
text: 'Hello',
},
userName: 'John',
};
const result = formatMessage(input);
expect(result).toEqual({
role: 'user',
content: 'Hello',
name: 'John',
});
});
it('formats a realistic user message', () => {
const input = {
message: {
_id: '6512cdfb92cbf69fea615331',
messageId: 'b620bf73-c5c3-4a38-b724-76886aac24c4',
__v: 0,
cancelled: false,
conversationId: '5c23d24f-941f-4aab-85df-127b596c8aa5',
createdAt: Date.now(),
error: false,
finish_reason: null,
isCreatedByUser: true,
isEdited: false,
model: null,
parentMessageId: '00000000-0000-0000-0000-000000000000',
sender: 'User',
text: 'hi',
tokenCount: 5,
unfinished: false,
updatedAt: Date.now(),
user: '6512cdf475f05c86d44c31d2',
},
userName: 'John',
};
const result = formatMessage(input);
expect(result).toEqual({
role: 'user',
content: 'hi',
name: 'John',
});
});
it('formats assistant message', () => {
const input = {
message: {
sender: 'assistant',
text: 'Hi there',
},
assistantName: 'Assistant',
};
const result = formatMessage(input);
expect(result).toEqual({
role: 'assistant',
content: 'Hi there',
name: 'Assistant',
});
});
it('formats system message', () => {
const input = {
message: {
role: 'system',
text: 'Hi there',
},
};
const result = formatMessage(input);
expect(result).toEqual({
role: 'system',
content: 'Hi there',
});
});
it('formats user message with langChain', () => {
const input = {
message: {
sender: 'user',
text: 'Hello',
},
userName: 'John',
langChain: true,
};
const result = formatMessage(input);
expect(result).toBeInstanceOf(HumanMessage);
expect(result.lc_kwargs.content).toEqual(input.message.text);
expect(result.lc_kwargs.name).toEqual(input.userName);
});
it('formats assistant message with langChain', () => {
const input = {
message: {
sender: 'assistant',
text: 'Hi there',
},
assistantName: 'Assistant',
langChain: true,
};
const result = formatMessage(input);
expect(result).toBeInstanceOf(AIMessage);
expect(result.lc_kwargs.content).toEqual(input.message.text);
expect(result.lc_kwargs.name).toEqual(input.assistantName);
});
it('formats system message with langChain', () => {
const input = {
message: {
role: 'system',
text: 'This is a system message.',
},
langChain: true,
};
const result = formatMessage(input);
expect(result).toBeInstanceOf(SystemMessage);
expect(result.lc_kwargs.content).toEqual(input.message.text);
});
});
describe('formatLangChainMessages', () => {
it('formats an array of messages for LangChain', () => {
const messages = [
{
role: 'system',
content: 'This is a system message',
},
{
sender: 'user',
text: 'Hello',
},
{
sender: 'assistant',
text: 'Hi there',
},
];
const formatOptions = {
userName: 'John',
assistantName: 'Assistant',
};
const result = formatLangChainMessages(messages, formatOptions);
expect(result).toHaveLength(3);
expect(result[0]).toBeInstanceOf(SystemMessage);
expect(result[1]).toBeInstanceOf(HumanMessage);
expect(result[2]).toBeInstanceOf(AIMessage);
expect(result[0].lc_kwargs.content).toEqual(messages[0].content);
expect(result[1].lc_kwargs.content).toEqual(messages[1].text);
expect(result[2].lc_kwargs.content).toEqual(messages[2].text);
expect(result[1].lc_kwargs.name).toEqual(formatOptions.userName);
expect(result[2].lc_kwargs.name).toEqual(formatOptions.assistantName);
});
});