mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-17 08:50:15 +01:00
384 lines
10 KiB
TypeScript
384 lines
10 KiB
TypeScript
|
|
import axios from 'axios';
|
||
|
|
import { logger } from '@librechat/data-schemas';
|
||
|
|
import { HttpsProxyAgent } from 'https-proxy-agent';
|
||
|
|
import { CacheKeys, KnownEndpoints, EModelEndpoint, defaultModels } from 'librechat-data-provider';
|
||
|
|
import type { IUser } from '@librechat/data-schemas';
|
||
|
|
import {
|
||
|
|
processModelData,
|
||
|
|
extractBaseURL,
|
||
|
|
isUserProvided,
|
||
|
|
resolveHeaders,
|
||
|
|
deriveBaseURL,
|
||
|
|
logAxiosError,
|
||
|
|
inputSchema,
|
||
|
|
} from '~/utils';
|
||
|
|
import { standardCache } from '~/cache';
|
||
|
|
|
||
|
|
export interface FetchModelsParams {
|
||
|
|
/** User ID for API requests */
|
||
|
|
user?: string;
|
||
|
|
/** API key for authentication */
|
||
|
|
apiKey: string;
|
||
|
|
/** Base URL for the API */
|
||
|
|
baseURL?: string;
|
||
|
|
/** Endpoint name (defaults to 'openAI') */
|
||
|
|
name?: string;
|
||
|
|
/** Whether directEndpoint was configured */
|
||
|
|
direct?: boolean;
|
||
|
|
/** Whether to fetch from Azure */
|
||
|
|
azure?: boolean;
|
||
|
|
/** Whether to send user ID as query parameter */
|
||
|
|
userIdQuery?: boolean;
|
||
|
|
/** Whether to create token configuration from API response */
|
||
|
|
createTokenConfig?: boolean;
|
||
|
|
/** Cache key for token configuration (uses name if omitted) */
|
||
|
|
tokenKey?: string;
|
||
|
|
/** Optional headers for the request */
|
||
|
|
headers?: Record<string, string> | null;
|
||
|
|
/** Optional user object for header resolution */
|
||
|
|
userObject?: Partial<IUser>;
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Fetches Ollama models from the specified base API path.
|
||
|
|
* @param baseURL - The Ollama server URL
|
||
|
|
* @param options - Optional configuration
|
||
|
|
* @returns Promise resolving to array of model names
|
||
|
|
*/
|
||
|
|
async function fetchOllamaModels(
|
||
|
|
baseURL: string,
|
||
|
|
options: { headers?: Record<string, string> | null; user?: Partial<IUser> } = {},
|
||
|
|
): Promise<string[]> {
|
||
|
|
if (!baseURL) {
|
||
|
|
return [];
|
||
|
|
}
|
||
|
|
|
||
|
|
const ollamaEndpoint = deriveBaseURL(baseURL);
|
||
|
|
|
||
|
|
const resolvedHeaders = resolveHeaders({
|
||
|
|
headers: options.headers ?? undefined,
|
||
|
|
user: options.user,
|
||
|
|
});
|
||
|
|
|
||
|
|
const response = await axios.get<{ models: Array<{ name: string }> }>(
|
||
|
|
`${ollamaEndpoint}/api/tags`,
|
||
|
|
{
|
||
|
|
headers: resolvedHeaders,
|
||
|
|
timeout: 5000,
|
||
|
|
},
|
||
|
|
);
|
||
|
|
|
||
|
|
return response.data.models.map((tag) => tag.name);
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Splits a string by commas and trims each resulting value.
|
||
|
|
* @param input - The input string to split.
|
||
|
|
* @returns An array of trimmed values.
|
||
|
|
*/
|
||
|
|
export function splitAndTrim(input: string | null | undefined): string[] {
|
||
|
|
if (!input || typeof input !== 'string') {
|
||
|
|
return [];
|
||
|
|
}
|
||
|
|
return input
|
||
|
|
.split(',')
|
||
|
|
.map((item) => item.trim())
|
||
|
|
.filter(Boolean);
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Fetches models from the specified base API path or Azure, based on the provided configuration.
|
||
|
|
*
|
||
|
|
* @param params - The parameters for fetching the models.
|
||
|
|
* @returns A promise that resolves to an array of model identifiers.
|
||
|
|
*/
|
||
|
|
export async function fetchModels({
|
||
|
|
user,
|
||
|
|
apiKey,
|
||
|
|
baseURL: _baseURL,
|
||
|
|
name = EModelEndpoint.openAI,
|
||
|
|
direct = false,
|
||
|
|
azure = false,
|
||
|
|
userIdQuery = false,
|
||
|
|
createTokenConfig = true,
|
||
|
|
tokenKey,
|
||
|
|
headers,
|
||
|
|
userObject,
|
||
|
|
}: FetchModelsParams): Promise<string[]> {
|
||
|
|
let models: string[] = [];
|
||
|
|
const baseURL = direct ? extractBaseURL(_baseURL ?? '') : _baseURL;
|
||
|
|
|
||
|
|
if (!baseURL && !azure) {
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (!apiKey) {
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (name && name.toLowerCase().startsWith(KnownEndpoints.ollama)) {
|
||
|
|
try {
|
||
|
|
return await fetchOllamaModels(baseURL ?? '', { headers, user: userObject });
|
||
|
|
} catch (ollamaError) {
|
||
|
|
const logMessage =
|
||
|
|
'Failed to fetch models from Ollama API. Attempting to fetch via OpenAI-compatible endpoint.';
|
||
|
|
logAxiosError({ message: logMessage, error: ollamaError as Error });
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
try {
|
||
|
|
const options: {
|
||
|
|
headers: Record<string, string>;
|
||
|
|
timeout: number;
|
||
|
|
httpsAgent?: HttpsProxyAgent;
|
||
|
|
} = {
|
||
|
|
headers: {
|
||
|
|
...(headers ?? {}),
|
||
|
|
},
|
||
|
|
timeout: 5000,
|
||
|
|
};
|
||
|
|
|
||
|
|
if (name === EModelEndpoint.anthropic) {
|
||
|
|
options.headers = {
|
||
|
|
'x-api-key': apiKey,
|
||
|
|
'anthropic-version': process.env.ANTHROPIC_VERSION || '2023-06-01',
|
||
|
|
};
|
||
|
|
} else {
|
||
|
|
options.headers.Authorization = `Bearer ${apiKey}`;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (process.env.PROXY) {
|
||
|
|
options.httpsAgent = new HttpsProxyAgent(process.env.PROXY);
|
||
|
|
}
|
||
|
|
|
||
|
|
if (process.env.OPENAI_ORGANIZATION && baseURL?.includes('openai')) {
|
||
|
|
options.headers['OpenAI-Organization'] = process.env.OPENAI_ORGANIZATION;
|
||
|
|
}
|
||
|
|
|
||
|
|
const url = new URL(`${(baseURL ?? '').replace(/\/+$/, '')}${azure ? '' : '/models'}`);
|
||
|
|
if (user && userIdQuery) {
|
||
|
|
url.searchParams.append('user', user);
|
||
|
|
}
|
||
|
|
const res = await axios.get(url.toString(), options);
|
||
|
|
|
||
|
|
const input = res.data;
|
||
|
|
|
||
|
|
const validationResult = inputSchema.safeParse(input);
|
||
|
|
if (validationResult.success && createTokenConfig) {
|
||
|
|
const endpointTokenConfig = processModelData(input);
|
||
|
|
const cache = standardCache(CacheKeys.TOKEN_CONFIG);
|
||
|
|
await cache.set(tokenKey ?? name, endpointTokenConfig);
|
||
|
|
}
|
||
|
|
models = input.data.map((item: { id: string }) => item.id);
|
||
|
|
} catch (error) {
|
||
|
|
const logMessage = `Failed to fetch models from ${azure ? 'Azure ' : ''}${name} API`;
|
||
|
|
logAxiosError({ message: logMessage, error: error as Error });
|
||
|
|
}
|
||
|
|
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** Options for fetching OpenAI models */
|
||
|
|
export interface GetOpenAIModelsOptions {
|
||
|
|
/** User ID for API requests */
|
||
|
|
user?: string;
|
||
|
|
/** Whether to fetch from Azure */
|
||
|
|
azure?: boolean;
|
||
|
|
/** Whether to fetch models for the Assistants endpoint */
|
||
|
|
assistants?: boolean;
|
||
|
|
/** OpenAI API key (if not using environment variable) */
|
||
|
|
openAIApiKey?: string;
|
||
|
|
/** Whether user provides their own API key */
|
||
|
|
userProvidedOpenAI?: boolean;
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Fetches models from OpenAI or Azure based on the provided options.
|
||
|
|
* @param opts - Options for fetching models
|
||
|
|
* @param _models - Fallback models array
|
||
|
|
* @returns Promise resolving to array of model IDs
|
||
|
|
*/
|
||
|
|
export async function fetchOpenAIModels(
|
||
|
|
opts: GetOpenAIModelsOptions,
|
||
|
|
_models: string[] = [],
|
||
|
|
): Promise<string[]> {
|
||
|
|
let models = _models.slice() ?? [];
|
||
|
|
const apiKey = opts.openAIApiKey ?? process.env.OPENAI_API_KEY;
|
||
|
|
const openaiBaseURL = 'https://api.openai.com/v1';
|
||
|
|
let baseURL = openaiBaseURL;
|
||
|
|
let reverseProxyUrl = process.env.OPENAI_REVERSE_PROXY;
|
||
|
|
|
||
|
|
if (opts.assistants && process.env.ASSISTANTS_BASE_URL) {
|
||
|
|
reverseProxyUrl = process.env.ASSISTANTS_BASE_URL;
|
||
|
|
} else if (opts.azure) {
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (reverseProxyUrl) {
|
||
|
|
baseURL = extractBaseURL(reverseProxyUrl) ?? openaiBaseURL;
|
||
|
|
}
|
||
|
|
|
||
|
|
const modelsCache = standardCache(CacheKeys.MODEL_QUERIES);
|
||
|
|
|
||
|
|
const cachedModels = await modelsCache.get(baseURL);
|
||
|
|
if (cachedModels) {
|
||
|
|
return cachedModels as string[];
|
||
|
|
}
|
||
|
|
|
||
|
|
if (baseURL || opts.azure) {
|
||
|
|
models = await fetchModels({
|
||
|
|
apiKey: apiKey ?? '',
|
||
|
|
baseURL,
|
||
|
|
azure: opts.azure,
|
||
|
|
user: opts.user,
|
||
|
|
name: EModelEndpoint.openAI,
|
||
|
|
});
|
||
|
|
}
|
||
|
|
|
||
|
|
if (models.length === 0) {
|
||
|
|
return _models;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (baseURL === openaiBaseURL) {
|
||
|
|
const regex = /(text-davinci-003|gpt-|o\d+)/;
|
||
|
|
const excludeRegex = /audio|realtime/;
|
||
|
|
models = models.filter((model) => regex.test(model) && !excludeRegex.test(model));
|
||
|
|
const instructModels = models.filter((model) => model.includes('instruct'));
|
||
|
|
const otherModels = models.filter((model) => !model.includes('instruct'));
|
||
|
|
models = otherModels.concat(instructModels);
|
||
|
|
}
|
||
|
|
|
||
|
|
await modelsCache.set(baseURL, models);
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Loads the default models for OpenAI or Azure.
|
||
|
|
* @param opts - Options for getting models
|
||
|
|
* @returns Promise resolving to array of model IDs
|
||
|
|
*/
|
||
|
|
export async function getOpenAIModels(opts: GetOpenAIModelsOptions = {}): Promise<string[]> {
|
||
|
|
let models = defaultModels[EModelEndpoint.openAI];
|
||
|
|
|
||
|
|
if (opts.assistants) {
|
||
|
|
models = defaultModels[EModelEndpoint.assistants];
|
||
|
|
} else if (opts.azure) {
|
||
|
|
models = defaultModels[EModelEndpoint.azureAssistants];
|
||
|
|
}
|
||
|
|
|
||
|
|
let key: string;
|
||
|
|
if (opts.assistants) {
|
||
|
|
key = 'ASSISTANTS_MODELS';
|
||
|
|
} else if (opts.azure) {
|
||
|
|
key = 'AZURE_OPENAI_MODELS';
|
||
|
|
} else {
|
||
|
|
key = 'OPENAI_MODELS';
|
||
|
|
}
|
||
|
|
|
||
|
|
if (process.env[key]) {
|
||
|
|
return splitAndTrim(process.env[key]);
|
||
|
|
}
|
||
|
|
|
||
|
|
if (opts.userProvidedOpenAI) {
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
return await fetchOpenAIModels(opts, models);
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Fetches models from the Anthropic API.
|
||
|
|
* @param opts - Options for fetching models
|
||
|
|
* @param _models - Fallback models array
|
||
|
|
* @returns Promise resolving to array of model IDs
|
||
|
|
*/
|
||
|
|
export async function fetchAnthropicModels(
|
||
|
|
opts: { user?: string } = {},
|
||
|
|
_models: string[] = [],
|
||
|
|
): Promise<string[]> {
|
||
|
|
let models = _models.slice() ?? [];
|
||
|
|
const apiKey = process.env.ANTHROPIC_API_KEY;
|
||
|
|
const anthropicBaseURL = 'https://api.anthropic.com/v1';
|
||
|
|
let baseURL = anthropicBaseURL;
|
||
|
|
const reverseProxyUrl = process.env.ANTHROPIC_REVERSE_PROXY;
|
||
|
|
|
||
|
|
if (reverseProxyUrl) {
|
||
|
|
baseURL = extractBaseURL(reverseProxyUrl) ?? anthropicBaseURL;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (!apiKey) {
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
const modelsCache = standardCache(CacheKeys.MODEL_QUERIES);
|
||
|
|
|
||
|
|
const cachedModels = await modelsCache.get(baseURL);
|
||
|
|
if (cachedModels) {
|
||
|
|
return cachedModels as string[];
|
||
|
|
}
|
||
|
|
|
||
|
|
if (baseURL) {
|
||
|
|
models = await fetchModels({
|
||
|
|
apiKey,
|
||
|
|
baseURL,
|
||
|
|
user: opts.user,
|
||
|
|
name: EModelEndpoint.anthropic,
|
||
|
|
tokenKey: EModelEndpoint.anthropic,
|
||
|
|
});
|
||
|
|
}
|
||
|
|
|
||
|
|
if (models.length === 0) {
|
||
|
|
return _models;
|
||
|
|
}
|
||
|
|
|
||
|
|
await modelsCache.set(baseURL, models);
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Gets Anthropic models from environment or API.
|
||
|
|
* @param opts - Options for fetching models
|
||
|
|
* @returns Promise resolving to array of model IDs
|
||
|
|
*/
|
||
|
|
export async function getAnthropicModels(opts: { user?: string } = {}): Promise<string[]> {
|
||
|
|
const models = defaultModels[EModelEndpoint.anthropic];
|
||
|
|
if (process.env.ANTHROPIC_MODELS) {
|
||
|
|
return splitAndTrim(process.env.ANTHROPIC_MODELS);
|
||
|
|
}
|
||
|
|
|
||
|
|
if (isUserProvided(process.env.ANTHROPIC_API_KEY)) {
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
try {
|
||
|
|
return await fetchAnthropicModels(opts, models);
|
||
|
|
} catch (error) {
|
||
|
|
logger.error('Error fetching Anthropic models:', error);
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Gets Google models from environment or defaults.
|
||
|
|
* @returns Array of model IDs
|
||
|
|
*/
|
||
|
|
export function getGoogleModels(): string[] {
|
||
|
|
let models = defaultModels[EModelEndpoint.google];
|
||
|
|
if (process.env.GOOGLE_MODELS) {
|
||
|
|
models = splitAndTrim(process.env.GOOGLE_MODELS);
|
||
|
|
}
|
||
|
|
return models;
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Gets Bedrock models from environment or defaults.
|
||
|
|
* @returns Array of model IDs
|
||
|
|
*/
|
||
|
|
export function getBedrockModels(): string[] {
|
||
|
|
let models = defaultModels[EModelEndpoint.bedrock];
|
||
|
|
if (process.env.BEDROCK_AWS_MODELS) {
|
||
|
|
models = splitAndTrim(process.env.BEDROCK_AWS_MODELS);
|
||
|
|
}
|
||
|
|
return models;
|
||
|
|
}
|