LibreChat/api/server/services/Config/loadConfigModels.js

114 lines
3.6 KiB
JavaScript
Raw Normal View History

🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
const { EModelEndpoint, extractEnvVariable } = require('librechat-data-provider');
const { isUserProvided, normalizeEndpointName } = require('~/server/utils');
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
const { fetchModels } = require('~/server/services/ModelService');
const { getCustomConfig } = require('./getCustomConfig');
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
/**
* Load config endpoints from the cached configuration object
* @function loadConfigModels
* @param {Express.Request} req - The Express request object.
*/
async function loadConfigModels(req) {
const customConfig = await getCustomConfig();
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
if (!customConfig) {
return {};
}
const { endpoints = {} } = customConfig ?? {};
const modelsConfig = {};
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
const azureEndpoint = endpoints[EModelEndpoint.azureOpenAI];
🅰️ feat: Azure OpenAI Assistants API Support (#1992) * chore: rename dir from `assistant` to plural * feat: `assistants` field for azure config, spread options in AppService * refactor: rename constructAzureURL param for azure as `azureOptions` * chore: bump openai and bun * chore(loadDefaultModels): change naming of assistant -> assistants * feat: load azure settings with currect baseURL for assistants' initializeClient * refactor: add `assistants` flags to groups and model configs, add mapGroupToAzureConfig * feat(loadConfigEndpoints): initialize assistants endpoint if azure flag `assistants` is enabled * feat(AppService): determine assistant models on startup, throw Error if none * refactor(useDeleteAssistantMutation): send model along with assistant id for delete mutations * feat: support listing and deleting assistants with azure * feat: add model query to assistant avatar upload * feat: add azure support for retrieveRun method * refactor: update OpenAIClient initialization * chore: update README * fix(ci): tests passing * refactor(uploadOpenAIFile): improve logging and use more efficient REST API method * refactor(useFileHandling): add model to metadata to target Azure region compatible with current model * chore(files): add azure naming pattern for valid file id recognition * fix(assistants): initialize openai with first available assistant model if none provided * refactor(uploadOpenAIFile): add content type for azure, initialize formdata before azure options * refactor(sleep): move sleep function out of Runs and into `~/server/utils` * fix(azureOpenAI/assistants): make sure to only overwrite models with assistant models if `assistants` flag is enabled * refactor(uploadOpenAIFile): revert to old method * chore(uploadOpenAIFile): use enum for file purpose * docs: azureOpenAI update guide with more info, examples * feat: enable/disable assistant capabilities and specify retrieval models * refactor: optional chain conditional statement in loadConfigModels.js * docs: add assistants examples * chore: update librechat.example.yaml * docs(azure): update note of file upload behavior in Azure OpenAI Assistants * chore: update docs and add descriptive message about assistant errors * fix: prevent message submission with invalid assistant or if files loading * style: update Landing icon & text when assistant is not selected * chore: bump librechat-data-provider to 0.4.8 * fix(assistants/azure): assign req.body.model for proper azure init to abort runs
2024-03-14 17:21:42 -04:00
const azureConfig = req.app.locals[EModelEndpoint.azureOpenAI];
const { modelNames } = azureConfig ?? {};
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
🅰️ feat: Azure OpenAI Assistants API Support (#1992) * chore: rename dir from `assistant` to plural * feat: `assistants` field for azure config, spread options in AppService * refactor: rename constructAzureURL param for azure as `azureOptions` * chore: bump openai and bun * chore(loadDefaultModels): change naming of assistant -> assistants * feat: load azure settings with currect baseURL for assistants' initializeClient * refactor: add `assistants` flags to groups and model configs, add mapGroupToAzureConfig * feat(loadConfigEndpoints): initialize assistants endpoint if azure flag `assistants` is enabled * feat(AppService): determine assistant models on startup, throw Error if none * refactor(useDeleteAssistantMutation): send model along with assistant id for delete mutations * feat: support listing and deleting assistants with azure * feat: add model query to assistant avatar upload * feat: add azure support for retrieveRun method * refactor: update OpenAIClient initialization * chore: update README * fix(ci): tests passing * refactor(uploadOpenAIFile): improve logging and use more efficient REST API method * refactor(useFileHandling): add model to metadata to target Azure region compatible with current model * chore(files): add azure naming pattern for valid file id recognition * fix(assistants): initialize openai with first available assistant model if none provided * refactor(uploadOpenAIFile): add content type for azure, initialize formdata before azure options * refactor(sleep): move sleep function out of Runs and into `~/server/utils` * fix(azureOpenAI/assistants): make sure to only overwrite models with assistant models if `assistants` flag is enabled * refactor(uploadOpenAIFile): revert to old method * chore(uploadOpenAIFile): use enum for file purpose * docs: azureOpenAI update guide with more info, examples * feat: enable/disable assistant capabilities and specify retrieval models * refactor: optional chain conditional statement in loadConfigModels.js * docs: add assistants examples * chore: update librechat.example.yaml * docs(azure): update note of file upload behavior in Azure OpenAI Assistants * chore: update docs and add descriptive message about assistant errors * fix: prevent message submission with invalid assistant or if files loading * style: update Landing icon & text when assistant is not selected * chore: bump librechat-data-provider to 0.4.8 * fix(assistants/azure): assign req.body.model for proper azure init to abort runs
2024-03-14 17:21:42 -04:00
if (modelNames && azureEndpoint) {
modelsConfig[EModelEndpoint.azureOpenAI] = modelNames;
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
}
🅰️ feat: Azure OpenAI Assistants API Support (#1992) * chore: rename dir from `assistant` to plural * feat: `assistants` field for azure config, spread options in AppService * refactor: rename constructAzureURL param for azure as `azureOptions` * chore: bump openai and bun * chore(loadDefaultModels): change naming of assistant -> assistants * feat: load azure settings with currect baseURL for assistants' initializeClient * refactor: add `assistants` flags to groups and model configs, add mapGroupToAzureConfig * feat(loadConfigEndpoints): initialize assistants endpoint if azure flag `assistants` is enabled * feat(AppService): determine assistant models on startup, throw Error if none * refactor(useDeleteAssistantMutation): send model along with assistant id for delete mutations * feat: support listing and deleting assistants with azure * feat: add model query to assistant avatar upload * feat: add azure support for retrieveRun method * refactor: update OpenAIClient initialization * chore: update README * fix(ci): tests passing * refactor(uploadOpenAIFile): improve logging and use more efficient REST API method * refactor(useFileHandling): add model to metadata to target Azure region compatible with current model * chore(files): add azure naming pattern for valid file id recognition * fix(assistants): initialize openai with first available assistant model if none provided * refactor(uploadOpenAIFile): add content type for azure, initialize formdata before azure options * refactor(sleep): move sleep function out of Runs and into `~/server/utils` * fix(azureOpenAI/assistants): make sure to only overwrite models with assistant models if `assistants` flag is enabled * refactor(uploadOpenAIFile): revert to old method * chore(uploadOpenAIFile): use enum for file purpose * docs: azureOpenAI update guide with more info, examples * feat: enable/disable assistant capabilities and specify retrieval models * refactor: optional chain conditional statement in loadConfigModels.js * docs: add assistants examples * chore: update librechat.example.yaml * docs(azure): update note of file upload behavior in Azure OpenAI Assistants * chore: update docs and add descriptive message about assistant errors * fix: prevent message submission with invalid assistant or if files loading * style: update Landing icon & text when assistant is not selected * chore: bump librechat-data-provider to 0.4.8 * fix(assistants/azure): assign req.body.model for proper azure init to abort runs
2024-03-14 17:21:42 -04:00
if (modelNames && azureEndpoint && azureEndpoint.plugins) {
modelsConfig[EModelEndpoint.gptPlugins] = modelNames;
}
if (azureEndpoint?.assistants && azureConfig.assistantModels) {
🤖 feat: OpenAI Assistants v2 (initial support) (#2781) * 🤖 Assistants V2 Support: Part 1 - Separated Azure Assistants to its own endpoint - File Search / Vector Store integration is incomplete, but can toggle and use storage from playground - Code Interpreter resource files can be added but not deleted - GPT-4o is supported - Many improvements to the Assistants Endpoint overall data-provider v2 changes copy existing route as v1 chore: rename new endpoint to reduce comparison operations and add new azure filesource api: add azureAssistants part 1 force use of version for assistants/assistantsAzure chore: switch name back to azureAssistants refactor type version: string | number Ensure assistants endpoints have version set fix: isArchived type issue in ConversationListParams refactor: update assistants mutations/queries with endpoint/version definitions, update Assistants Map structure chore: FilePreview component ExtendedFile type assertion feat: isAssistantsEndpoint helper chore: remove unused useGenerations chore(buildTree): type issue chore(Advanced): type issue (unused component, maybe in future) first pass for multi-assistant endpoint rewrite fix(listAssistants): pass params correctly feat: list separate assistants by endpoint fix(useTextarea): access assistantMap correctly fix: assistant endpoint switching, resetting ID fix: broken during rewrite, selecting assistant mention fix: set/invalidate assistants endpoint query data correctly feat: Fix issue with assistant ID not being reset correctly getOpenAIClient helper function feat: add toast for assistant deletion fix: assistants delete right after create issue for azure fix: assistant patching refactor: actions to use getOpenAIClient refactor: consolidate logic into helpers file fix: issue where conversation data was not initially available v1 chat support refactor(spendTokens): only early return if completionTokens isNaN fix(OpenAIClient): ensure spendTokens has all necessary params refactor: route/controller logic fix(assistants/initializeClient): use defaultHeaders field fix: sanitize default operation id chore: bump openai package first pass v2 action service feat: retroactive domain parsing for actions added via v1 feat: delete db records of actions/assistants on openai assistant deletion chore: remove vision tools from v2 assistants feat: v2 upload and delete assistant vision images WIP first pass, thread attachments fix: show assistant vision files (save local/firebase copy) v2 image continue fix: annotations fix: refine annotations show analyze as error if is no longer submitting before progress reaches 1 and show file_search as retrieval tool fix: abort run, undefined endpoint issue refactor: consolidate capabilities logic and anticipate versioning frontend version 2 changes fix: query selection and filter add endpoint to unknown filepath add file ids to resource, deleting in progress enable/disable file search remove version log * 🤖 Assistants V2 Support: Part 2 🎹 fix: Autocompletion Chrome Bug on Action API Key Input chore: remove `useOriginNavigate` chore: set correct OpenAI Storage Source fix: azure file deletions, instantiate clients by source for deletion update code interpret files info feat: deleteResourceFileId chore: increase poll interval as azure easily rate limits fix: openai file deletions, TODO: evaluate rejected deletion settled promises to determine which to delete from db records file source icons update table file filters chore: file search info and versioning fix: retrieval update with necessary tool_resources if specified fix(useMentions): add optional chaining in case listMap value is undefined fix: force assistant avatar roundedness fix: azure assistants, check correct flag chore: bump data-provider * fix: merge conflict * ci: fix backend tests due to new updates * chore: update .env.example * meilisearch improvements * localization updates * chore: update comparisons * feat: add additional metadata: endpoint, author ID * chore: azureAssistants ENDPOINTS exclusion warning
2024-05-19 12:56:55 -04:00
modelsConfig[EModelEndpoint.azureAssistants] = azureConfig.assistantModels;
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
}
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
if (!Array.isArray(endpoints[EModelEndpoint.custom])) {
return modelsConfig;
}
const customEndpoints = endpoints[EModelEndpoint.custom].filter(
(endpoint) =>
endpoint.baseURL &&
endpoint.apiKey &&
endpoint.name &&
endpoint.models &&
(endpoint.models.fetch || endpoint.models.default),
);
/**
* @type {Record<string, Promise<string[]>>}
* Map for promises keyed by unique combination of baseURL and apiKey */
const fetchPromisesMap = {};
/**
* @type {Record<string, string[]>}
* Map to associate unique keys with endpoint names; note: one key may can correspond to multiple endpoints */
const uniqueKeyToEndpointsMap = {};
/**
* @type {Record<string, Partial<TEndpoint>>}
* Map to associate endpoint names to their configurations */
const endpointsMap = {};
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
for (let i = 0; i < customEndpoints.length; i++) {
const endpoint = customEndpoints[i];
const { models, name: configName, baseURL, apiKey } = endpoint;
const name = normalizeEndpointName(configName);
endpointsMap[name] = endpoint;
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
const API_KEY = extractEnvVariable(apiKey);
const BASE_URL = extractEnvVariable(baseURL);
const uniqueKey = `${BASE_URL}__${API_KEY}`;
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
modelsConfig[name] = [];
if (models.fetch && !isUserProvided(API_KEY) && !isUserProvided(BASE_URL)) {
fetchPromisesMap[uniqueKey] =
fetchPromisesMap[uniqueKey] ||
fetchModels({
name,
apiKey: API_KEY,
baseURL: BASE_URL,
user: req.user.id,
direct: endpoint.directEndpoint,
userIdQuery: models.userIdQuery,
});
uniqueKeyToEndpointsMap[uniqueKey] = uniqueKeyToEndpointsMap[uniqueKey] || [];
uniqueKeyToEndpointsMap[uniqueKey].push(name);
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
continue;
}
if (Array.isArray(models.default)) {
modelsConfig[name] = models.default;
}
}
const fetchedData = await Promise.all(Object.values(fetchPromisesMap));
const uniqueKeys = Object.keys(fetchPromisesMap);
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
for (let i = 0; i < fetchedData.length; i++) {
const currentKey = uniqueKeys[i];
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
const modelData = fetchedData[i];
const associatedNames = uniqueKeyToEndpointsMap[currentKey];
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
for (const name of associatedNames) {
const endpoint = endpointsMap[name];
modelsConfig[name] = !modelData?.length ? (endpoint.models.default ?? []) : modelData;
💫 feat: Config File & Custom Endpoints (#1474) * WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
2024-01-03 09:22:48 -05:00
}
}
return modelsConfig;
}
module.exports = loadConfigModels;