LibreChat/api/server/services/Config/loadAsyncEndpoints.js

61 lines
1.7 KiB
JavaScript
Raw Normal View History

🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
const { EModelEndpoint } = require('librechat-data-provider');
const { addOpenAPISpecs } = require('~/app/clients/tools/util/addOpenAPISpecs');
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
const { availableTools } = require('~/app/clients/tools');
const { isUserProvided } = require('~/server/utils');
const { config } = require('./EndpointService');
const { openAIApiKey, azureOpenAIApiKey, useAzurePlugins, userProvidedOpenAI, googleKey } = config;
/**
* Load async endpoints and return a configuration object
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
* @param {Express.Request} req - The request object
*/
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
async function loadAsyncEndpoints(req) {
let i = 0;
feat: Google Gemini ❇️ (#1355) * refactor: add gemini-pro to google Models list; use defaultModels for central model listing * refactor(SetKeyDialog): create useMultipleKeys hook to use for Azure, export `isJson` from utils, use EModelEndpoint * refactor(useUserKey): change variable names to make keyName setting more clear * refactor(FileUpload): allow passing container className string * feat(GoogleClient): Gemini support * refactor(GoogleClient): alternate stream speed for Gemini models * feat(Gemini): styling/settings configuration for Gemini * refactor(GoogleClient): substract max response tokens from max context tokens if context is above 32k (I/O max is combined between the two) * refactor(tokens): correct google max token counts and subtract max response tokens when input/output count are combined towards max context count * feat(google/initializeClient): handle both local and user_provided credentials and write tests * fix(GoogleClient): catch if credentials are undefined, handle if serviceKey is string or object correctly, handle no examples passed, throw error if not a Generative Language model and no service account JSON key is provided, throw error if it is a Generative m odel, but not google API key was provided * refactor(loadAsyncEndpoints/google): activate Google endpoint if either the service key JSON file is provided in /api/data, or a GOOGLE_KEY is defined. * docs: updated Google configuration * fix(ci): Mock import of Service Account Key JSON file (auth.json) * Update apis_and_tokens.md * feat: increase max output tokens slider for gemini pro * refactor(GoogleSettings): handle max and default maxOutputTokens on model change * chore: add sensitive redact regex * docs: add warning about data privacy * Update apis_and_tokens.md
2023-12-15 02:18:07 -05:00
let serviceKey, googleUserProvides;
try {
feat: Google Gemini ❇️ (#1355) * refactor: add gemini-pro to google Models list; use defaultModels for central model listing * refactor(SetKeyDialog): create useMultipleKeys hook to use for Azure, export `isJson` from utils, use EModelEndpoint * refactor(useUserKey): change variable names to make keyName setting more clear * refactor(FileUpload): allow passing container className string * feat(GoogleClient): Gemini support * refactor(GoogleClient): alternate stream speed for Gemini models * feat(Gemini): styling/settings configuration for Gemini * refactor(GoogleClient): substract max response tokens from max context tokens if context is above 32k (I/O max is combined between the two) * refactor(tokens): correct google max token counts and subtract max response tokens when input/output count are combined towards max context count * feat(google/initializeClient): handle both local and user_provided credentials and write tests * fix(GoogleClient): catch if credentials are undefined, handle if serviceKey is string or object correctly, handle no examples passed, throw error if not a Generative Language model and no service account JSON key is provided, throw error if it is a Generative m odel, but not google API key was provided * refactor(loadAsyncEndpoints/google): activate Google endpoint if either the service key JSON file is provided in /api/data, or a GOOGLE_KEY is defined. * docs: updated Google configuration * fix(ci): Mock import of Service Account Key JSON file (auth.json) * Update apis_and_tokens.md * feat: increase max output tokens slider for gemini pro * refactor(GoogleSettings): handle max and default maxOutputTokens on model change * chore: add sensitive redact regex * docs: add warning about data privacy * Update apis_and_tokens.md
2023-12-15 02:18:07 -05:00
serviceKey = require('~/data/auth.json');
} catch (e) {
if (i === 0) {
i++;
}
}
if (isUserProvided(googleKey)) {
feat(Google): Support all Text/Chat Models, Response streaming, `PaLM` -> `Google` 🤖 (#1316) * feat: update PaLM icons * feat: add additional google models * POC: formatting inputs for Vertex AI streaming * refactor: move endpoints services outside of /routes dir to /services/Endpoints * refactor: shorten schemas import * refactor: rename PALM to GOOGLE * feat: make Google editable endpoint * feat: reusable Ask and Edit controllers based off Anthropic * chore: organize imports/logic * fix(parseConvo): include examples in googleSchema * fix: google only allows odd number of messages to be sent * fix: pass proxy to AnthropicClient * refactor: change `google` altName to `Google` * refactor: update getModelMaxTokens and related functions to handle maxTokensMap with nested endpoint model key/values * refactor: google Icon and response sender changes (Codey and Google logo instead of PaLM in all cases) * feat: google support for maxTokensMap * feat: google updated endpoints with Ask/Edit controllers, buildOptions, and initializeClient * feat(GoogleClient): now builds prompt for text models and supports real streaming from Vertex AI through langchain * chore(GoogleClient): remove comments, left before for reference in git history * docs: update google instructions (WIP) * docs(apis_and_tokens.md): add images to google instructions * docs: remove typo apis_and_tokens.md * Update apis_and_tokens.md * feat(Google): use default settings map, fully support context for both text and chat models, fully support examples for chat models * chore: update more PaLM references to Google * chore: move playwright out of workflows to avoid failing tests
2023-12-10 14:54:13 -05:00
googleUserProvides = true;
if (i <= 1) {
i++;
}
}
const tools = await addOpenAPISpecs(availableTools);
function transformToolsToMap(tools) {
return tools.reduce((map, obj) => {
map[obj.pluginKey] = obj.name;
return map;
}, {});
}
const plugins = transformToolsToMap(tools);
feat: Google Gemini ❇️ (#1355) * refactor: add gemini-pro to google Models list; use defaultModels for central model listing * refactor(SetKeyDialog): create useMultipleKeys hook to use for Azure, export `isJson` from utils, use EModelEndpoint * refactor(useUserKey): change variable names to make keyName setting more clear * refactor(FileUpload): allow passing container className string * feat(GoogleClient): Gemini support * refactor(GoogleClient): alternate stream speed for Gemini models * feat(Gemini): styling/settings configuration for Gemini * refactor(GoogleClient): substract max response tokens from max context tokens if context is above 32k (I/O max is combined between the two) * refactor(tokens): correct google max token counts and subtract max response tokens when input/output count are combined towards max context count * feat(google/initializeClient): handle both local and user_provided credentials and write tests * fix(GoogleClient): catch if credentials are undefined, handle if serviceKey is string or object correctly, handle no examples passed, throw error if not a Generative Language model and no service account JSON key is provided, throw error if it is a Generative m odel, but not google API key was provided * refactor(loadAsyncEndpoints/google): activate Google endpoint if either the service key JSON file is provided in /api/data, or a GOOGLE_KEY is defined. * docs: updated Google configuration * fix(ci): Mock import of Service Account Key JSON file (auth.json) * Update apis_and_tokens.md * feat: increase max output tokens slider for gemini pro * refactor(GoogleSettings): handle max and default maxOutputTokens on model change * chore: add sensitive redact regex * docs: add warning about data privacy * Update apis_and_tokens.md
2023-12-15 02:18:07 -05:00
const google = serviceKey || googleKey ? { userProvide: googleUserProvides } : false;
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
const useAzure = req.app.locals[EModelEndpoint.azureOpenAI]?.plugins;
const gptPlugins =
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
useAzure || openAIApiKey || azureOpenAIApiKey
? {
plugins,
availableAgents: ['classic', 'functions'],
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
userProvide: useAzure ? false : userProvidedOpenAI,
userProvideURL: useAzure
? false
: config[EModelEndpoint.openAI]?.userProvideURL ||
config[EModelEndpoint.azureOpenAI]?.userProvideURL,
🅰️ feat: Azure Config to Allow Different Deployments per Model (#1863) * wip: first pass for azure endpoint schema * refactor: azure config to return groupMap and modelConfigMap * wip: naming and schema changes * refactor(errorsToString): move to data-provider * feat: rename to azureGroups, add additional tests, tests all expected outcomes, return errors * feat(AppService): load Azure groups * refactor(azure): use imported types, write `mapModelToAzureConfig` * refactor: move `extractEnvVariable` to data-provider * refactor(validateAzureGroups): throw on duplicate groups or models; feat(mapModelToAzureConfig): throw if env vars not present, add tests * refactor(AppService): ensure each model is properly configured on startup * refactor: deprecate azureOpenAI environment variables in favor of librechat.yaml config * feat: use helper functions to handle and order enabled/default endpoints; initialize azureOpenAI from config file * refactor: redefine types as well as load azureOpenAI models from config file * chore(ci): fix test description naming * feat(azureOpenAI): use validated model grouping for request authentication * chore: bump data-provider following rebase * chore: bump config file version noting significant changes * feat: add title options and switch azure configs for titling and vision requests * feat: enable azure plugins from config file * fix(ci): pass tests * chore(.env.example): mark `PLUGINS_USE_AZURE` as deprecated * fix(fetchModels): early return if apiKey not passed * chore: fix azure config typing * refactor(mapModelToAzureConfig): return baseURL and headers as well as azureOptions * feat(createLLM): use `azureOpenAIBasePath` * feat(parsers): resolveHeaders * refactor(extractBaseURL): handle invalid input * feat(OpenAIClient): handle headers and baseURL for azureConfig * fix(ci): pass `OpenAIClient` tests * chore: extract env var for azureOpenAI group config, baseURL * docs: azureOpenAI config setup docs * feat: safe check of potential conflicting env vars that map to unique placeholders * fix: reset apiKey when model switches from originally requested model (vision or title) * chore: linting * docs: CONFIG_PATH notes in custom_config.md
2024-02-26 14:12:25 -05:00
azure: useAzurePlugins || useAzure,
}
: false;
return { google, gptPlugins };
}
module.exports = loadAsyncEndpoints;